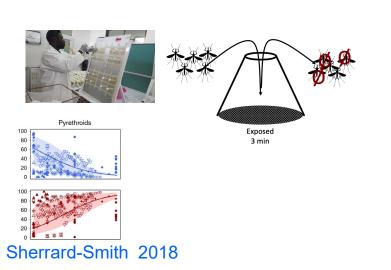
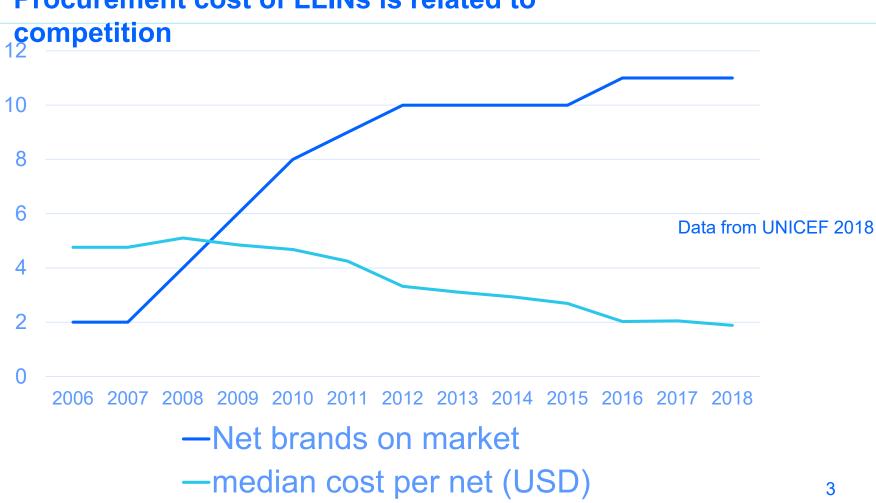


Non-inferiority testing of long-lasting insecticidal nets through ambient chamber tests I-ACT

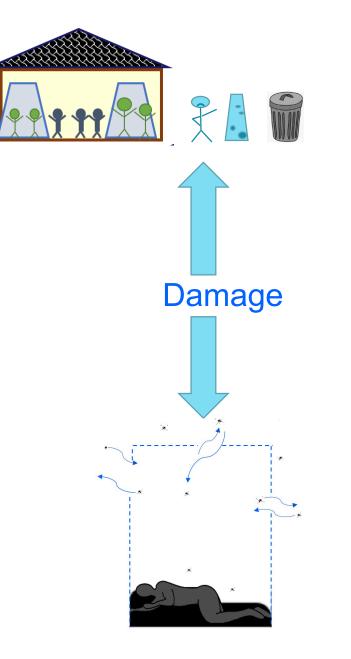

Sarah J Moore Ifakara Health Institute and Swiss Tropical and Public Health Institute

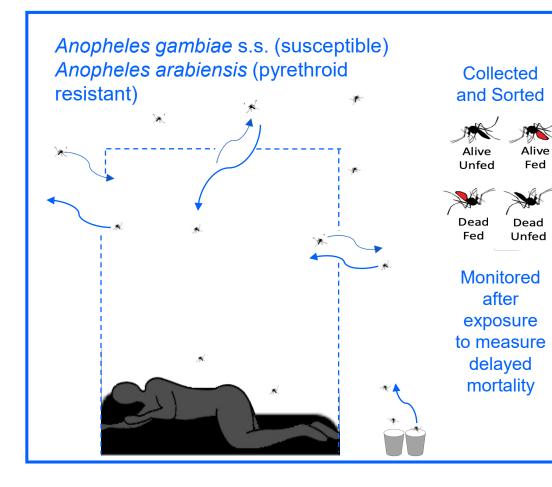
What matters when calculating the functional life of a net?


- 1. Attrition (access) and use
- Koenker 2019

- 2. Damage
- 3. Bio-efficacy

4. Chemical content

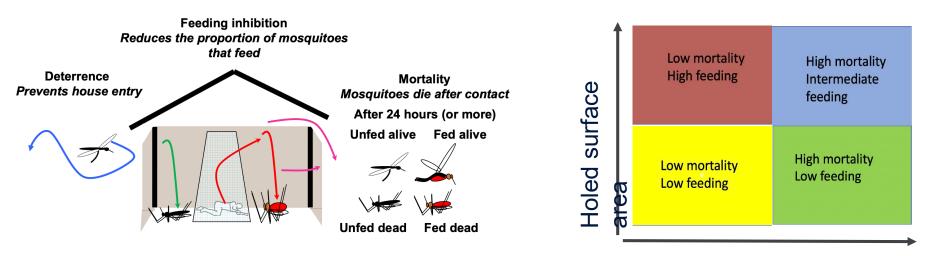



Procurement cost of LLINs is related to

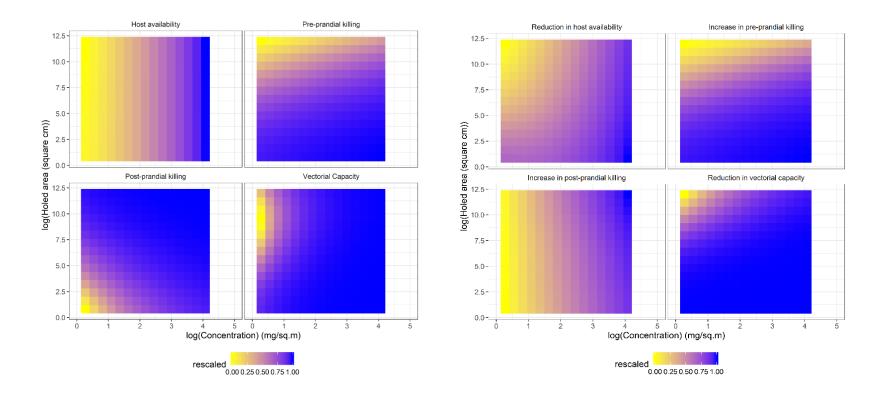
RBM Partnership To End Malaria

2/12/2020

Hole net tests



Okumu 2012 PLoS One Massue 2019 Mal J


What do nets do to reduce malaria?

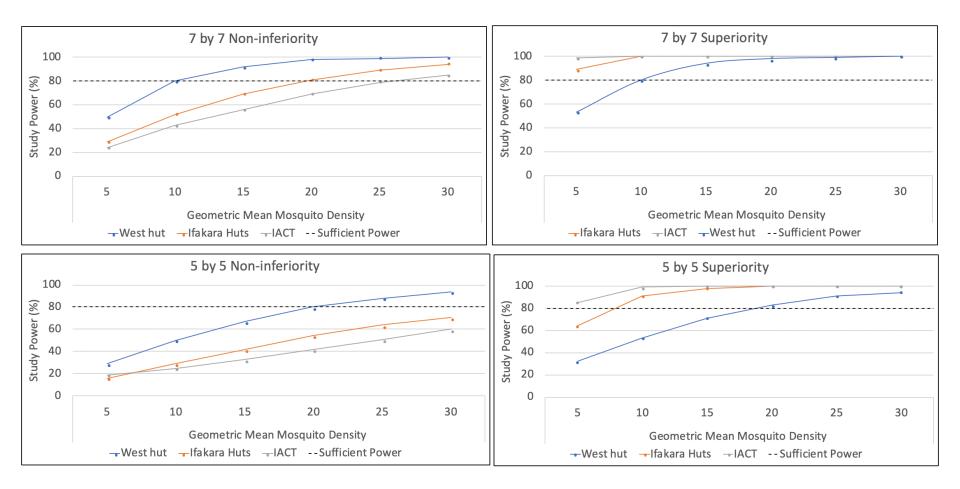
Insecticide concentration

4

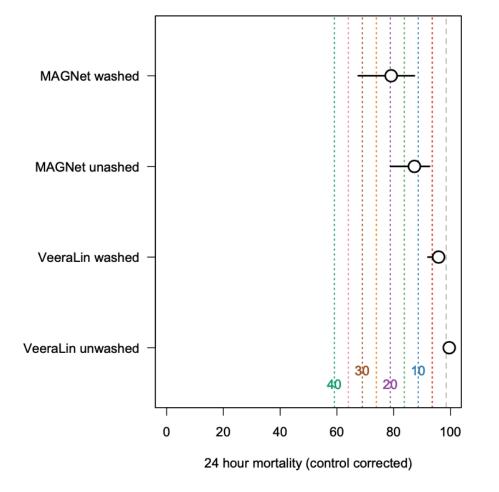
Results summary

Estimates for humans using mosquito nets at complete coverage, with mosquitoes behaving like the susceptible colony (left) and resistant colony (right).

Blue corresponds to the highest value for each effect, and yellow to the lowest

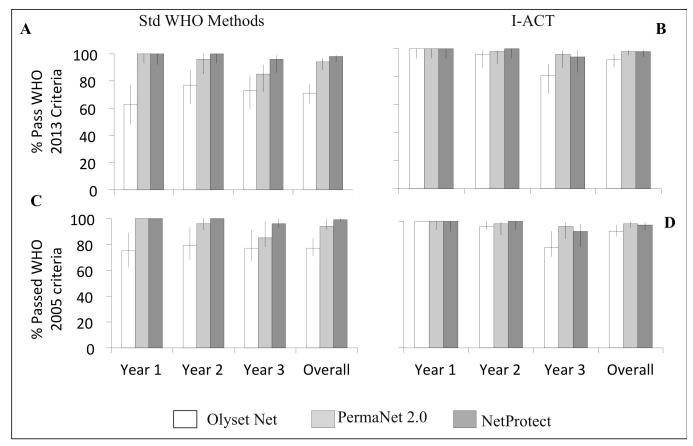

IACT vs West African Huts PBO Nets

	rta	alit	ty		Feeding Success									
		tment		ontrol	-		eight	Otala		ent Co			Log Odds-Ratio	Weight
Study	Yes	No	Yes	No		with 95% CI ((%)	Study	Yes	No Yes	s NO		with 95% Cl	(%)
West Huts								West Huts						
Alpha+PBO Unwashed	186	180	23	1,031		3.84 [3.37, 4.30] 12	2.64	Alpha+PBO Unwashed	86 2	80 665	389	•	-1.72 [-1.99, -1.44]	12.95
Alpha+PBO Washed	144	233	23	1,031		3.32 [2.86, 3.78] 12	2.64	Alpha+PBO Washed		88 665		•	-1.71 [-1.98, -1.44]	12.95
Alpha Unwashed	147	359	23	1,031		2.91 [2.45, 3.37] 12	2.64	Alpha Unwashed	206 3	00 665	389	-	-0.91 [-1.13, -0.70]	12.97
Alpha Washed	90	429	23	1,031		2.24 [1.77, 2.71] 12	2.63	Alpha Washed	225 2	94 665	389		-0.80 [-1.02, -0.59]	12.97
Heterogeneity: T ² = 0.40, l ² = 87.67%	6, H ² =	8.11			•	3.08 [2.42, 3.74]	>	Heterogeneity: $T^2 = 0.23$, $I^2 = 93.8$	88%, H² = 16	5.33		•	-1.28 [-1.77, -0.79]	>
Test of $\theta_i = \theta_i$: Q(3) = 24.05, p = 0.00)							Test of $\theta_{i} = \theta_{j}$: Q(3) = 47.63, p = 0	0.00					
,								Ifakara Ambient Chamber Test						
Ifakara Ambient Chamber Tests									-					40.00
Alpha+PBO Unwashed	596	3	29	567		— 8.26 [7.07, 9.46] 11	1.56	Alpha+PBO Unwashed			255 —		-6.68 [-8.65, -4.72]	
Alpha+PBO Washed	570	29	29	567		5.95 [5.42, 6.48] 12	2.57	Alpha+PBO Washed		96 341			-5.58 [-6.73, -4.44]	
Alpha Unwashed	519	83	29	567		4.81 [4.37, 5.25] 12	2.66	Alpha Unwashed	16 5	86 341	255		-3.89 [-4.41, -3.37]	12.81
Alpha Washed	464	130	29	567		4.25 [3.82, 4.67] 12	2.67	Alpha Washed	75	87 341	255 —		-4.72 [-5.48, -3.96]	
Heterogeneity: T ² = 2.80, l ² = 97.37%	6, H ² =	38.09				5.75 [4.08, 7.43]	>	Heterogeneity: $\tau^2 = 0.85$, $I^2 = 80.3$	37%, H ² = 5.	09	-	<	-4.98 [-6.03, -3.92]	>
Test of $\theta_i = \theta_j$: Q(3) = 54.25, p = 0.00)							Test of $\theta_{i} = \theta_{j}$: Q(3) = 13.56, p = 0	0.00					
Overall						4.40 [3.12, 5.69]		Overall					-3.15 [-4.66, -1.63]	
						4.40 [0.12, 0.00]		Heterogeneity: T ² = 4.60, l ² = 99.3	3/% H2 = 1F	51 51				
Heterogeneity: $T^2 = 3.33$, $I^2 = 98.15\%$,	54.14						o y	,	1.51				
Test of $\theta_i = \theta_j$: Q(7) = 199.68, p = 0.0	00							Test of $\theta_{i} = \theta_{j}$: Q(7) = 297.51, p =	0.00					
Test of group differences: $Q_{h}(1) = 8.4$	47, p =	0.00	>					Test of group differences: $Q_{b}(1) =$	= 38.85, p = 0	0.00		_		
					2 4 6 8	10					-8 -6 -4	-2	Ó	
								Pandam offacta DEML model						

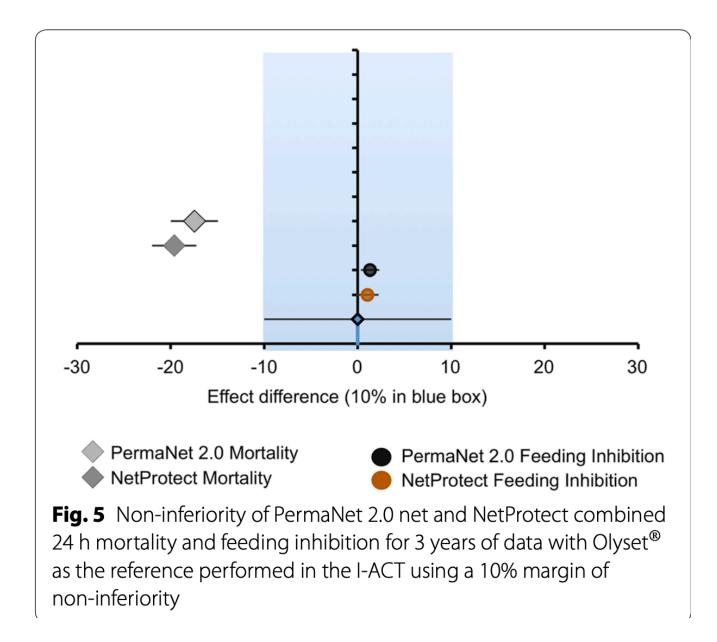

Random-effects REML model

Random-effects REML model

To be sure that new candidate nets are truly no worse than those with demonstrated public health benefit, it is important to have adequate replication (sample size) because the less rigorously conducted the trial, the easier it can be to show non-inferiority due to large confidence intervals.



IACT Superiority of PBO Nets for resistant strain (P450)



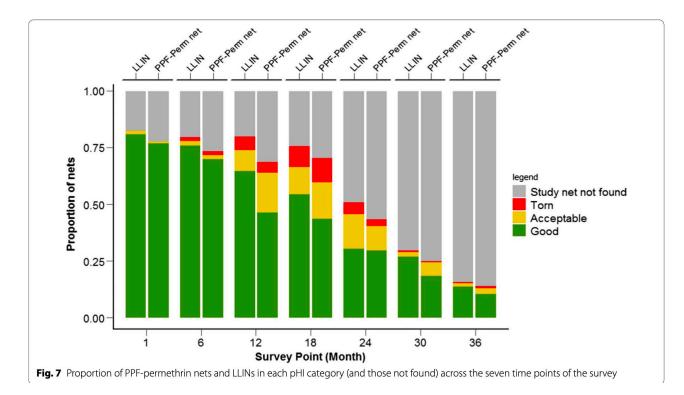
Data presented courtesy of VKA Polymers

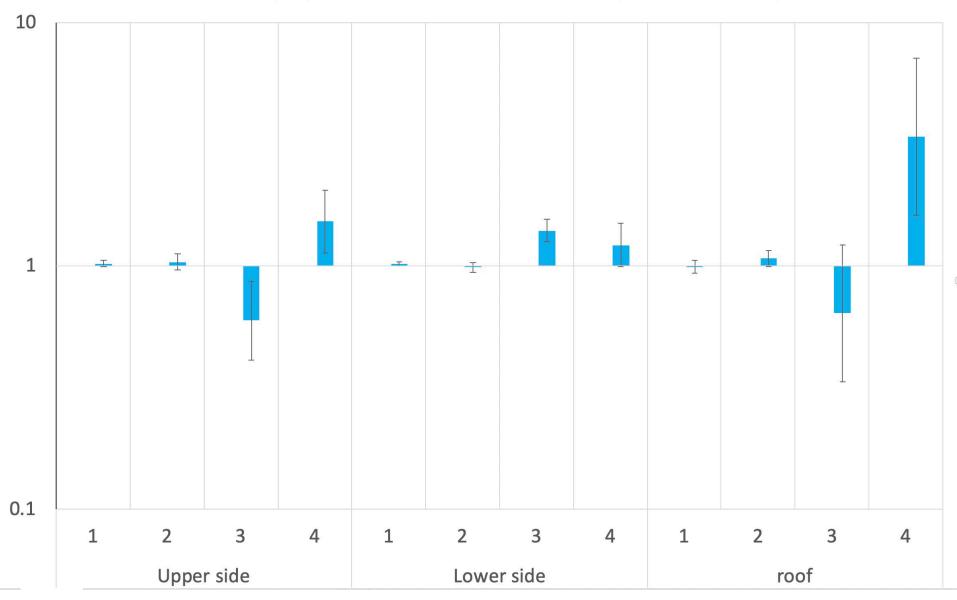

IACT compared to standard WHO methods

Massue et al 2018 Mal J

Particular	WHO cone test	WHO Tunnel test	Ifakara Ambient Chamber			
			test (IACT)			
Endpoints measured	Knock down mortality (KD 60) 24 hour mortality	24 hour mortality Feeding inhibition	24 hour mortality Feeding inhibition Reproductive inhibition			
Bait Used	No	Rabbit, guinea pig	Human			
Circadian rhythm	Day	Night	Night			
Mosquito flight	No	Yes	Yes			
Mosquitoes per net	80	100	30			
Exposure time	3 minutes	12-15 hours	12 hours			
Holding time	24 hours	None	24 hours			
Time to conduct including preparation	25 hours	16 hours	26 hours			
Surface area exposed to mosquitoes	78cm ²	625cm ²	Whole net			
Useful for durability monitoring	Measures presence of insecticide	Measures mortality and feeding inhibition on section of net	Measures the functional efficacy of nets under user conditions			

Results summary the impact of Pyriproxyfen


	Net Type	No. of washes	No. BF	No. BF alive at 24 hrs	No. BF alive at 72 hrs	No. (%) laid eggs	Total eggs	Mean eggs per female	Total larvae	Mean larvae per female	Mean (%) Eggs hatche d	% redn in fecundity
Succept	Control	0	667	633	559	559 (100)	12,067	35.3	11,739	21.0	97.3	
Suscept ible PPF ne		0	91	24	20	14 (70)	95	19.0	65	4.6	68.4	99.39
	FFFIlet	20	115	30	29	4 (14)	337	112.3	252	63.0	74.8	97.65
Popieto	Control	0	696	660	598	598 (100)	13,063	31.18	11,913	20	91.2	
Resista - nt	PPF net	0	276	233	212	101	462	21.39	357	3.5	77.3	97
		20	340	275	239	195	1,598	12.67	1,141	5.6	71.4	90.4

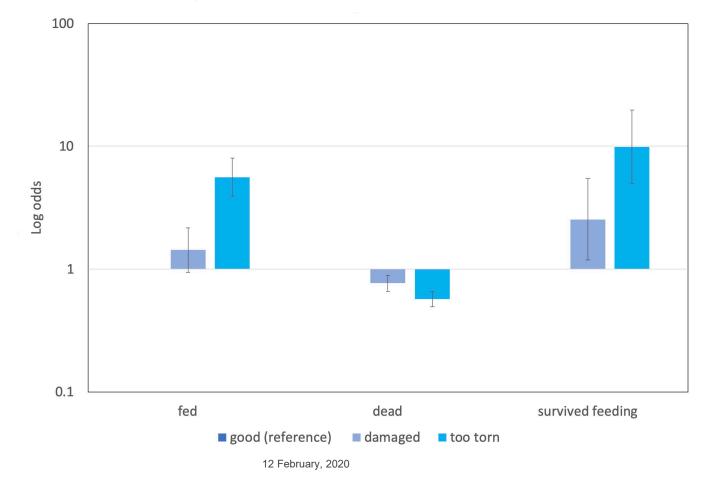

RESEARCH

Open Access

Assessing the impact of the addition of pyriproxyfen on the durability of permethrin-treated bed nets in Burkina Faso: a compound-randomized controlled trial

Kobié H. Toé^{1†}, Frank Mechan^{2†}, Julie-Anne A. Tangena^{2†}, Marion Morris², Joanna Solino², Emile F. S. Tchicaya³, Alphonse Traoré¹, Hanafy Ismail², James Maas², Natalie Lissenden², Margaret Pinder^{4,5}, Steve W. Lindsay⁴, Alfred B. Tiono¹, Hilary Ranson^{2*} and N'Falé Sagnon¹

Survival of feeding adjusted for hole size and location An. gambiae s.s. susceptible


RBM Partnership To End Malaria Presentation Title

Estimating functional survival of long-lasting insecticidal nets from field aged nets

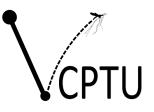
Table 1: Suggested categorization of proportionate Hole Index data

Category	pHI value range	Approximate total hole surface area in cm ²				
		If circle*	If rectangular*			
Good	0-64	<79	<100			
Damaged	65-642	80-789	100-1,000			
Too torn	643+	>790	>1,000			

*refers to the assumed functional shape of the hole

- Olivier Briet
- Tom Smith

- Jason Moore
- Emanuel Mbuba
- Dennis Massue


IFAKARA HEALTH INSTITUTE research | training | services

- Rose Philipo
- Olukayode Odufuwa

- Jo Lines
- Raphael N'Guessan

