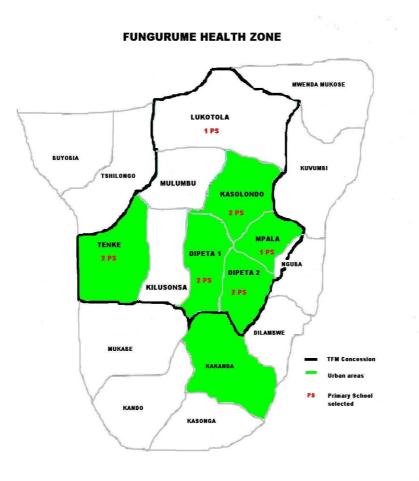


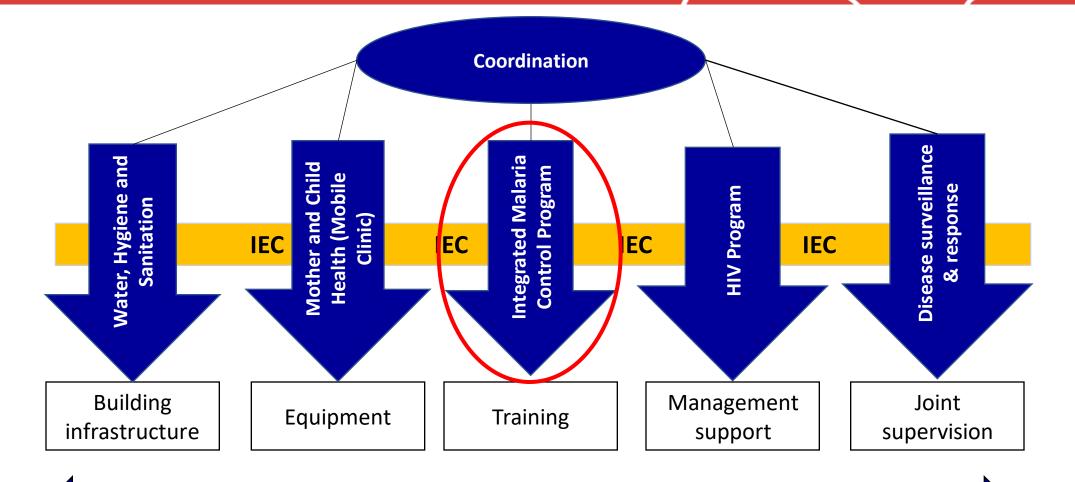
TENKE FUNGURUME MINING

INTEGRATED MALARIA CONTROL PROGRAM

Léonard M. Ngwej

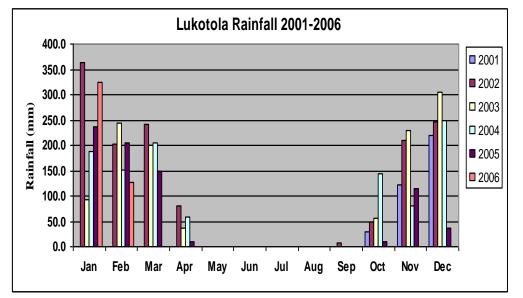
BRIEF OVERVIEW OF THE PRIMARY FUNDER


- TENKE FUNGURUME MINING:
- Lualaba Province.
- ~180 Km NW of Lubumbashi.
- 70 Km E of Kolwezi.
- TFM covered surface: ~1 600 Km2.
- Largest private investment in DRC.
- Production of Cu and Co started in 2009.
- Subsidiary of China Molybdenum (CMOC) since November 2016.
- Components : 80% CMOC, 20% Gecamines.



- Population = >380,000 people and TFM Households: ±75%.
- Agents and contractors = ~ 10000 .
- 18 health areas, 12 of which are in the concession.
- > 60% of medical visits were malaria-related, confirmed with microscopic and/or RDT diagnosis.
- No vector control program in the area before TFM.

THE 5 AXES OF THE COMMUNITY HEALTH PROGRAM IN THE FUNGURUME HEALTH ZONE


Revitalizing of Fungurume Health Zone

TENKE

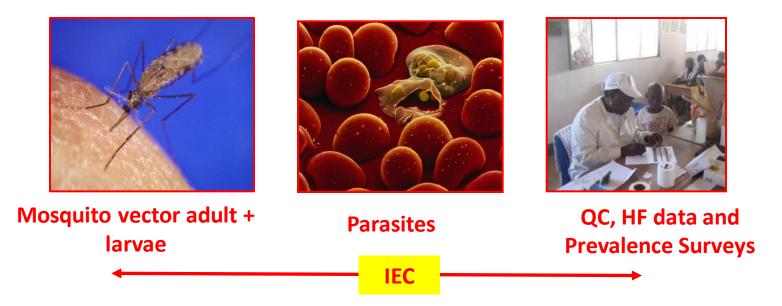
FUNGURUME Mining

MALARIA RISK IN THE AREA

- 2 seasons: (dry and rainy).
- Suitable climate for vectors.
- Endemicity of Malaria.

Year-round transmission with seasonal fluctuations :

Oct-Nov: 1st rains (transmission increases). Dec-Feb: Intense rainfall (high transmission). Mar-Apr: Last rains (high transmission). May-July: Cold season, dryness (transmission decreases). August-September: Hot season, dryness (lowest transmission).


CHRONOLOGY OF THE PROGRAM DEVELOPMENT

- June 2006: Development of vector mapping through an initial vector survey :
 - Main Vector: An. gambiae s.s.
 - Secondary vectors: An. coustani , An. funestus
 - 18 species of anopheles in total to date
- Oct 2006: Vector control program protocol
- Mai 2007: Workplace vector control program begins
- Mai 2007: 1st school-based prevalence survey among 6 to 12-year-old students (n=536): 77% prevalence
- Mai 2007: 1st sensitivity tests: An. gambiae et An. funestus
 - No resistance to DDT, bendiocarb, malathion, deltamethrin
 - Soil and water examination (negligible traces, no trace of DDT)
- Oct 2008: Start of the program itself: 1st IRS and LLIN distribution campaign

INTEGRATED MALARIA CONTROL PROGRAM

• 5 pillars, all integrated, with design and implementation based on scientific evidence

- 2 components: workplace and community
- Robust program monitoring and evaluation with impact indicators (incidence, prevalence)

SUMMARY OF ACTIVITIES CONDUCTED

COMMUNITY

Main activity:

- Indoor Spraying

Other activities:

- Monitoring of larval sources
- Vector surveillance
- Information, education, communication
- Impact assessment

WORK ENVIRONMENT

- Indoor Spraying
- Spatial spraying
- Monitoring of larval sources
- Larviciding treatments
- Environmental management
- Case Management & Investigations
- Chemo-prophylaxis
- Information, Education, Communication
- -LLIN
- Repellents and aerosol cans
- Impact assessment

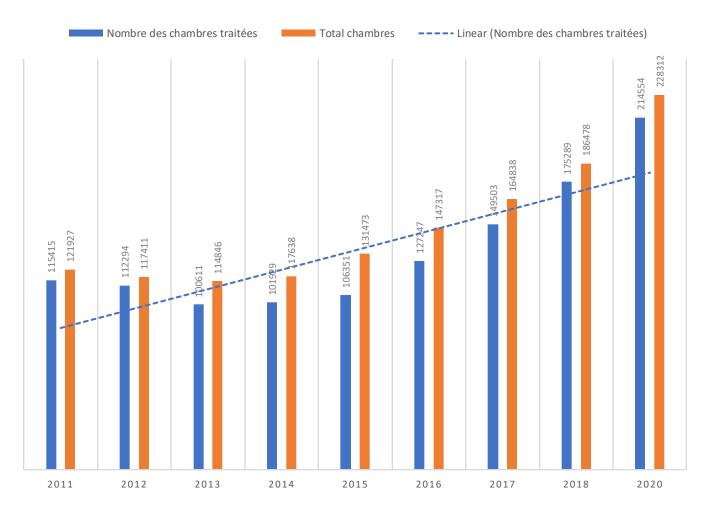
INDOOR RESIDUAL SPRAYING (IRS)

- Indoor residual spraying on household walls
- Reduces/prevents indoors transmission
- Lethal effect on endophilic vectors
- Reduction of vector density

Implementation

- Mapping; enumeration of structures
- Supply: equipment, insecticide (duty free), PPE
- Recruitment, training: spray operators, field supervisors, mobilizers
- Job descriptions and SOPs
- Logistics: Vehicles in good condition
- Timing: before the beginning of the rainy season
- Insecticides used:
 - ✓ 2008-2010: Pyrethroids (PY);
 - ✓ 2011-2014: Carbamates (PY resistance detected in 2010).
 - ✓ 2014-2018: Organophosphates (OP)
 - ✓ 2019-2020: Neonicotinoids (NN).

DATA COLLECTION AND ANALYSIS


2 levels in the field: Spay operators + Supervisors

Verification by the data manager + compilation and daily capture

Weekly report: TFM, ZSF, PNLP

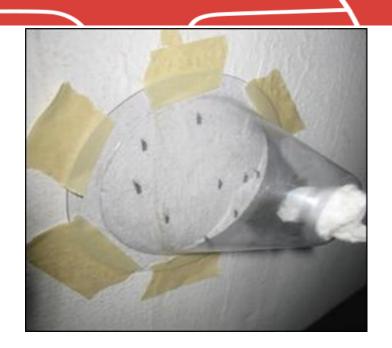
Results :

- 2020 Campaign: 62,893 households visited ~
 214,554 rooms sprayed (48,982 rooms in 2008).
- 2008-2020: increase of >338%.
- Coverage in 2020: ~ 93.97%. (WHO:85%)

MONITORING AND EVALUATION: SUSCEPTIBILITY FESTING

- Entomology laboratory with insectarium
- Females of local mosquitoes, reared in an insectarium
- Insecticide-impregnated filter papers according to the WHO standard protocol
- Tests performed every semester
- Resistance to pyrethroids and DDT already registered

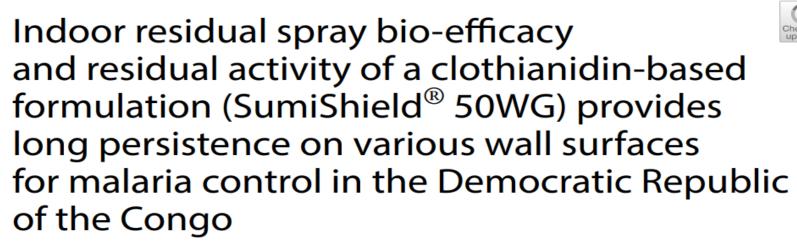
Insecticide	Number of mosquitoes	Number of tests	Dead mosquitoes	% Mortality
Deltamethrin 0.05%	125	5	102	81.6 %
Deltamethrin 0.05% + PBO 4%	100	4	100	100 %
Permethrin 0.75 %	100	4	59	59 %
Permethrin 0.75% + PBO 4%	100	4	90	90 %
Malathion 5 %	150	6	150	100 %
Pirimiphos-methyl 0.25%	100	4	100	100 %
Bendiocarb 0.1 %	100	4	100	100 %
Bendiocarb 0.5 %	100	4	100	100 %
Propoxur 0.1%	200	8	195	97.5 %
DDT 4 %	100	4	26	26 %



BIOLOGICAL EFFICACY TESTS

Bioassays are performed on the treated walls

- Goal: determine the evolution of the insecticide's persistence over time
- Tests conducted with susceptible mosquitoes (30 minutes exposure), each year during and after the IRS campaign
- Tests carried out on the different categories of walls: unfired bricks (33.8%), fired bricks (40.0%), plastered walls (13.7%), plastered and painted walls (12.2%), thatch (0.3%) (2020)



PUBLICATIONS AND DOCTORAL THESIS

RESEARCH

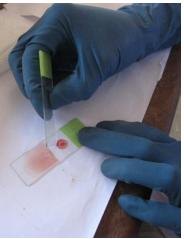
Open Access

Leonard M. Ngwej^{1,2*}, Izak Hattingh¹, Godwill Mlambo¹, Emmanuel M. Mashat¹, Jean-Christophe K. Kashala³, Françoise K. Malonga² and Michael J. Bangs^{1,4,5}

RESEARCH

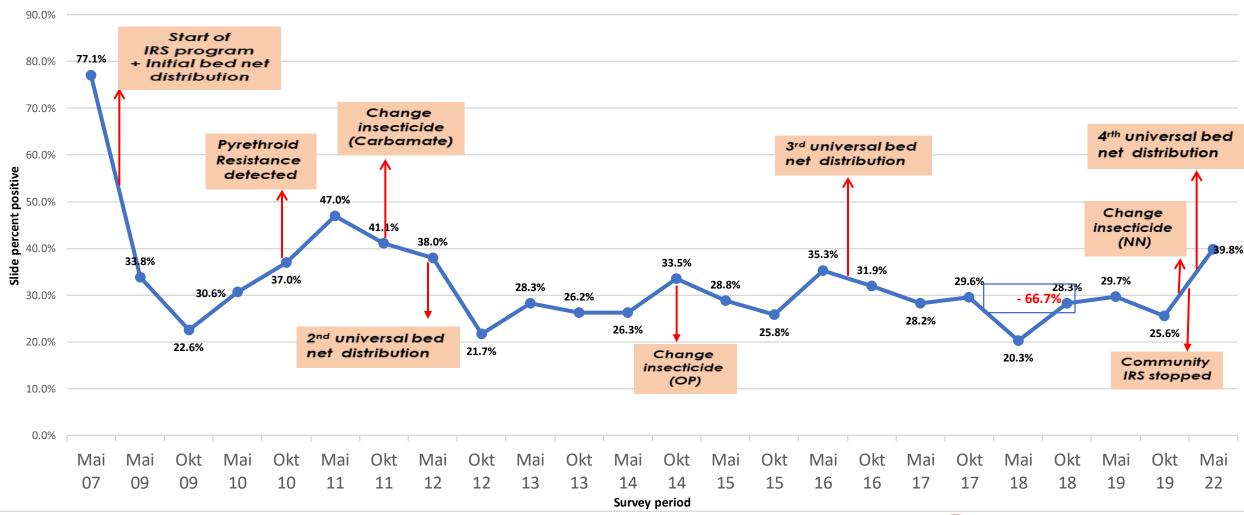
Open Access

Variable residual activity of K-Othrine[®] PolyZone and Actellic[®] 300 CS in semi-field and natural conditions in the Democratic Republic of the Congo


Leonard M. Ngwej^{1,2*}, Emmanuel M. Mashat¹, Clarence K. Mukeng², Henri T. Mundongo², Françoise K. Malonga², Jean-Christophe K. Kashala³ and Michael J. Bangs^{1,4,5}

MALARIA PREVALENCE SURVEYS IN SCHOOLS

- Bi-annual (May & October) school malaria prevalence surveys:
 - ✓ Randomized sampling
 - ✓ Students 6-12 years (primary cycle)
 - ✓ From 2008 to 2019, 66.7% reduction in malaria prevalence
- External quality control of microscopic slides
- Bi-annual visit by an external evaluator



MALARIA PREVALENCE IN SCHOOLS: MAY 2007-MAY 2022*

PUBLICATIONS AND DOCTORAL THESIS

RESEARCH

Open Access

Feasibility and implementation of community-based malaria case management with integrated vector control in the Democratic Republic of Congo

Edouard Kawawa Swana^{1,4*}, Ghislain Yav Makan², Clarence Kaut Mukeng⁴, Henriette Ilunga Mupumba³, Gabriel Mutabusha Kalaba³, Oscar Numbi Luboya⁴ and Michael J. Bangs^{4,5}

RESEARCH

Open Access

CrossMark

School-based malaria prevalence: informative systematic surveillance measure to assess epidemiological impact of malaria control interventions in the Democratic Republic of the Congo

Edouard K. Swana^{1,3,4*}, Thierry I. Yav^{1,3,4}, Leonard M. Ngwej^{1,4}, Betty N. Mupemba², Suprianto⁵, Clarence K. Mukeng⁴, Izak Hattingh¹, Oscar N. Luboya^{3,4}, Jean-Baptiste S. Kakoma^{3,4} and Michael J. Bangs^{4,5}

- The TFM program has significantly reduced the incidence of malaria among workers and the prevalence of malaria in the community through the main pillar of IRS.
- High population mobility to non-covered areas causes reinfections.
- The influx of populations in the mining areas increases the number of structures to be sprayed, thus increasing the cost of the intervention.
- Added to this is the increasing cost of insecticides, and a limited number of insecticide classes to use.
- Need for a public-private partnership to continue the program as the cost is becoming increasingly heavy for the company.

- IRS withdrawal following its non-inclusion in the specifications (New mining code)

- The community finds the activity too costly for the money allocated to social programs by TFM

-Malaria upsurge

- Need to find alternative control strategies (Purchase of PBO ITNs considered in the meantime)

THANK YOU!

Léonard M. Ngwej DVM, MSc, PhD Head of the Vector Control Unit

