Increasing interest in including quality (durability) as a criteria in LLIN procurement
For this to be possible we need
- Either
- Precise and accurate data on cost/useful life
- Or
- Lab test(s) that reflect performance in the field and have grouped specifications
Impact of durability on Demand and Cost

Savings could be as high as $1 billion in the next 5 years for an LLIN with a 5 year useful life and $1.5 billion for a 7-year LLIN.
Objectives

- To understand current conceptual and methodological issues around “durability”
- To review existing options of textile testing that would better reflect the real life situation
- To recommend next steps on how to arrive at improved standards and/or specifications
- To suggest an action plan to obtain sufficient data to define cut-off levels for potential test methods
Outline of Programme

• Define the problem
 - Methods to measure useful life and durability, available data and specifications

• Review options for textile testing and evidence
 - What tests are already being used for nets, what experience or field data exists

• Develop recommendations for action
Methodology: Two components

Attrition - Integrity

- **HH has net**
- **Net is gone**
- **Attrition Rate**
 - Proportion Lost
- **Retention Rate**
 - Proportion Retained
- **Surviving nets**
- **Discarded nets not included**

Time
Field methods

- Always need combination of attrition due to damage and proportion of surviving nets still “functional” or “not too torn”
- Cross-sectional surveys can measure attrition and integrity if done well but have problems with recall
- Prospective studies good to measure integrity but seriously underestimate attrition (nets kept)
- We have currently no good methods to distinguish cause of holes through surveys (need qualitative approaches)
Survival of nets as a function of time
Field data

- There is a high variation of net performance between
 - Geographic areas
 - Between villages (clustering)
 - Within households
- Behavioural and non-product related factors are significant (burn holes - rodents)
Context with textile testing

Lab test on netting → Material, Product → Field use

- Potential Performance
- Actual Performance

Behaviour, Environment

Significant variation
Sampling crucial

Photo: Sarah Hoibak
Context with textile testing

- Four principal initial causes of holes
 - Tears, burn holes, animal damage, seams
Context with textile testing

• Four principal initial causes of holes
 – Tears, burn holes, animal damage, seams
• Possible pre-damage through other factors (aging)
 – Heat, abrasion, chemical, UV
• Only if textile testing reflects the dominant stress on net (modes of failure) will there be a correlation between lab results and field data
Textile testing methods

- Many methods exist that can mimic certain stresses on the net ... except for animal damage

Bursting test

Source: Ana Paula Fonte, CITEVE
Textile testing methods

- Many methods exist that can mimic certain stresses on the net ... except for animal damage

Shrinkage after washing

Source: Hartmut Haid, ITV
Textile testing methods

- Many methods exist that can mimic certain stresses on the net ... except for animal damage

Tensile test with hook(s)

Source: Ana Paula Fonte, CITEVE
Textile testing methods

Many methods exist that can mimic certain stresses on the net ... except for animal damage

Dynamic or slow nail test

Source: Marc Dedieu, IFTH
Textile testing methods

- Many methods exist that can mimic certain stresses on the net ... except for animal damage

Source: Marc Dedieu, IFTH

Fire test
Abrasion

Source: Ana Paula Fonte, CITEVE
Textile testing methods

- Methods to simulate aging in the lab
 - Weather-o-mat (wet-dry-heat-UV)... but relevant?
 - Stone washing... but easy to standardize?
 - Abrasion + tensile test = Abrasion resistance promising to show vulnerability to damage in a “stressed net”

- Microscopic and spectral analysis of representative samples of nets not too old could give a picture of proportionate distribution of initial damage (complement field data)
Conclusions from field and lab data

• While good progress is made to define methodologies there is still a high level of variation and uncertainty
 - Behavior and rodents
 - Variations in testing conditions
• This explains the current absence of correlation between lab and field data (especially bursting strength)
Potential textile tests

- Textile Experts reviewed potential tests at end of meeting and propose the following as most promising
 - i. Bursting strength (strength and integrity of fabric)
 - ii. Modified hook test to simulate tearing vs. cutting effects.
 - iii. Modified ball-burster test. 3D pull for a net hanging at 90 degrees with stress on a branch and intersection of net.
Potential textile tests

- Textile Experts reviewed potential tests at end of meeting and propose the following as most promising
 - iv. Test for hole-spreading using ball-burster machine. Make a defined cut in net, push through with 1-inch metallic ball, and measure the force it takes to spread a hole.
 - v. If the modified hook test and the ball-bursting tests are used, the traditional tensile test will no longer be necessary.
 - vi. If microscopy shows a degradation of the fibers (size reduced), then conduct a light abrasion test before the above tests
Way forward—action points

• Collect well-defined field data from representative locations ASAP in accordance with WHO-GMP guidelines to be analyzed for attrition, physical condition and tested in lab
• Develop methods (validated field tools) to distinguish cause of holes in the field in early phase of destruction
• Evaluate the actual proportional contribution of each “mode of failure”. Then determine suite of (weighted) tests reflecting cause pattern
• Target to have minimal standards (cut-off) for different aspects of net performance set by WHOPES
• Find better ways to define the magnitude of rodent problem and options for interventions