Vector resistance studies in Uganda in relation to insecticide use in public health and agriculture

Tarekegn Abeku and Michelle Helinski
Malaria Consortium

RBM 9th VCWG Meeting, Geneva
20 February 2014
Pyrethroid Resistance Management Project

Objectives

- To evaluate the role of IRS using carbamates or organophosphates in pyrethroid resistance management to prolong the usefulness of LLINs
- To understand the role of insecticides used in public health and agriculture in the spread of vector resistance
- To understand the impact of resistance on effectiveness of interventions
- To support MOH to develop resistance management strategies to maintain coverage of effective malaria interventions
IRS target districts

<table>
<thead>
<tr>
<th>Year</th>
<th>Implementer</th>
<th>No Districts targeted IRS</th>
<th>Insecticide used</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>PMI (RTI)</td>
<td>1 District South</td>
<td>Lambda-cyhalothrin</td>
</tr>
<tr>
<td>2007</td>
<td>PMI (RTI)</td>
<td>2 Districts South,</td>
<td>Lambda-cyhalothrin</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 Districts North</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>PMI (RTI)</td>
<td>5 Districts North</td>
<td>DDT</td>
</tr>
<tr>
<td></td>
<td>NMCP</td>
<td></td>
<td>Alpha-cypermethrin</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 District East</td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>PMI (RTI/Abt)</td>
<td>5 Districts North</td>
<td>Alpha-cypermethrin</td>
</tr>
<tr>
<td>2010</td>
<td>PMI (Abt)</td>
<td>10 Districts* North</td>
<td>Alpha-cypermethrin</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bendiocarb</td>
</tr>
<tr>
<td>2011</td>
<td>PMI (Abt)</td>
<td>10 Districts* North</td>
<td>Bendiocarb</td>
</tr>
<tr>
<td>2012</td>
<td>PMI (Abt)</td>
<td>10 Districts* North</td>
<td>Bendiocarb</td>
</tr>
<tr>
<td></td>
<td>NMCP</td>
<td>1 District East</td>
<td></td>
</tr>
</tbody>
</table>

* In 2010, large districts underwent district subdivision
Historical distribution of LLINs per site (2001-2011)
Study site selection

45 sites in 3 groups of districts:

Group A Districts that had undergone several rounds of IRS and received LLINs (Apac, Gulu, Pader)

Group B Districts where LLINs had been distributed but no IRS had taken place (Kayunga, Kiboga, Mbale)

Group C Districts that had not received IRS or LLINs as part of a large campaign (Bugiri, Mayuge, Soroti)

During our survey in September of 2012, LLINs were distributed in Mayuge and Bugiri districts as part of a LLIN mass distribution campaign. In Soroti, nets were distributed a couple of months before the survey.
Study components

- Entomological surveys
- Household and malirometric surveys
- Health facility-based morbidity studies
- Intensity of insecticide use in public health
- Intensity of insecticide use in agriculture
Entomology survey

- WHO susceptibility tests

- Pyrethrum Spray Catches (PSC)
 - 12 houses in each site x 2 rounds

- Molecular analysis:
 - Species
 - Sporozoite rates
 - Molecular markers of resistance
Household and maliometric surveys

- Household interviews
 - Ownership of ITNs
 - Use of ITNs by household members
 - Spray status of houses
 - Socio-economic status

- Malaria infection rates
 - Infection rates linked with use of interventions by households and household members
Health facility-based morbidity studies

- Trends in morbidity from a geographically defined area (health centre data) over about 10 years:
 - How is the trend associated with the intensity of use of interventions?
 - Is the trend of malaria in any way related to variation in resistance levels?
Intensity of insecticide use: public health

- Use of IRS over the years
- ITNs distributed over the years
- Current use of IRS
- Current use of LLINs
Intensity of insecticide use: agriculture

• Agricultural chemicals supplied at district and sub-district levels

• Agricultural offices

• Pesticide suppliers/shops (Agro-dealers)

• Use of agricultural pesticides by farmers (household surveys)
Malaria prevalence (Sep 2012)

- Group A: 5%
- Group B: 5%
- Group C: 25%

Malaria prevalence
Malaria prevalence by age

- Group A
- Group B
- Group C
LLIN use during survey

![Box plots showing mean number of LLINs used per household and proportion of LLINs used. The plots are labeled A, B, and C.]
Entomology Results
Indoor resting densities of *A. gambiae* s.l. and *A. funestus* s.l.
Susceptibility tests

- Insecticide-susceptibility tests were performed following WHO guidelines
- Deltamethrin, permethrin and bendiocarb
- *A. gambiae* s.l. and *A. funestus* s.l.
- The main challenge was low mosquito densities
Susceptibility tests

- Resistance status determined according to current WHO guidelines:

 S: susceptible populations
 (≥98% mortality: GREEN)

 SR: suspected resistant populations
 (90-<98%: ORANGE)

 R: resistant populations
 (<90% mortality: RED)
Resistance mechanisms Uganda

- Metabolic resistance *An. funestus* (Morgan et al. 2010)

- L1014S *kdr* mutation observed in *An. gambiae* s.s., less common in *An. arabiensis* (Verhaegen et al. 2010, Ramphula et al. 2009, Maweji et al. 2012)

- Ace-1R mutation absent *An. gambiae* s.s. (Ramphula et al. 2009)

- Metabolic and target site resistance testing ongoing by ABT/PMI/CDC
Tentative conclusions

• Resistance to pyrethroids is widespread in Uganda

• Bendiocarb resistance was not detected in any of the IRS districts

• The apparent reversion of pyrethroid resistance in Apac requires confirmation

• Apart from Apac, in the other bendiocarb-sprayed districts, pyrethroid resistance does not seem to have reverted

• In the districts with less historical coverage of nets, malaria prevalence is relatively higher compared to areas with high ITN coverage – this indicates that nets seem to be providing protection despite widespread resistance

• Next steps: molecular analysis and further data analysis
Acknowledgements

• Study participants
• Vector Control Officers and field staff
• Ministry of Health/ NMCP
• Malaria Consortium staff
• UK Aid
www.malariaconsortium.org

Thank you