6th Durability of LLINs in the Field Work Stream

Meeting Outcomes

9th Annual RBM Vector Control Working Group (VCWG) Meeting Geneva, 19 Feb 2014

Measuring LLIN Attrition and Physical Durability – 1

- Methodology for measuring median LLIN survival published in 2013.
- Recommendation does <u>not</u> include measurement of insecticide activity loss until a practical, nondestructive field method becomes available.
- Published at http://www.who.int/malaria/mpac

Malaria Policy Advisory Committee Meeting 11-13 September 2013, Crowne Plaza Hotel, Geneva Session 6.1

Vector Control Technical Expert Group Report to MPAC September 2013

Estimating functional survival of long-lasting insecticidal nets from field data

Measuring LLIN Attrition and Physical Durability – 2

- Few field studies published thus far, but many are in progress.
 - Working list of studies in-progress has been tabulated.
- Initial findings suggest LLIN loss rates are highly dependent on local environments.
 - Points to the need for LLIN monitoring as a <u>routine</u> activity.
- Initial findings suggest most LLINs perform roughly the same.
 - Exception: PMI studies found Olyset to be least durable.
 - Sumitomo responded by modifying the Olyset knit pattern.

Field Measurement of Insecticide Levels

- Karl Malamud-Roam (Rutgers): review of the state-of-the-art in nondestructive testing for pyrethroids on fabrics.
- No single method is suitable for all pyrethroids and more work is needed.

	Permethrin	Deltamethrin	Alpha- Cypermethrin
Bioassay			
Wash #			
Usage			
Wear			
GC/MS			
IR			
X-Ray			
UV			
ELISA			
Colorimetry			

Causes of Physical Damage

- Stephen Russell (Leeds): Presented results from extensive microscopic examination of holes in field-retrieved LLINS.
- Morphological features of different kinds of damage identified.
- Breakdown of hole damage by use setting.
- Results were highly setting-dependent.
- Rodent damage commonplace, but most damage was result of snags and tears.

Physical Testing of LLINs to Predict Durability

- Phase 2 of Leeds study to identify tests based on types of damage seen on used LLINs. (under way)
- WHOPES/CITEVE study testing all WHOPES-recommended LLINs using standard or slightly modified standard textile test methods. (to be published 2014)

Issues not Addressed

- Practical definition of a "failed" net.
 - How much damage and insecticide loss is acceptable?
- Economics of improving durability
 - Apparent consensus that some improvement would bring longterm cost savings.
 - What is optimum lifespan of an LLIN?
 - Insecticide resistance implications.

The way forward

- Need to improve communication.
 - Balancing presentations with discussion in future meetings.
 - Regular teleconferences.
 - Topic-based.
- Work Stream activity development
 - Co-chairs will continue to work with members to develop work plan.
 - Potential for developing collaborative ties with Global Fund.

