Brief update on malaria case management

A. Bosman, J. Cunningham, P. Olumese and S. Schwarte
Prevention, Diagnostic and Treatment Unit

ASTMH- SIDE MEETING OF RBM CASE MANAGEMENT WORKING GROUP
22 November, 2019 National Harbour, Maryland
Past Updates February and June 2019

10th Annual Meeting of the Case Management Working Group

The 10th Annual Meeting of the Case Management Working Group took place at the Global Health Campus in Geneva from February 6 - 8. Over three days, all participants discussed emerging themes in case management and the restructuring of the group. The objectives of the meeting were:

- To convene the global malaria partners to share experience and evidence on best practices for improving malaria case management
- To identify priority areas of work and deliverables for the coming year
- To determine appropriate methods of work and focal points for identified priorities and timelines for deliverables.

General Information
Meeting Report
Meeting Agenda
List of Participants
A brief update on the CMWG, February 2019
Presentations
Day One
Elizabeth Johns & Lucy Boker - Background and Objectives
Andrea Bosman - Update on malaria case management policies and guidelines

https://endmalaria.org/events/10th-annual-meeting-case-management-working-group

Stay connected

The e-Newsletter provides regular updates on MPAC meetings and recommendations.
- How to subscribe

https://www.who.int/malaria/mpac/en/

CMWG Webinar - 24 June 2019

For the latest updates of the CMWG have a look at the CMWG Webinar that took place on 24 June 2019.
Click here to watch the full webinar
Organizer: Anna Vecchi
Presentations:
Andrea Bosman - Briefing on outcomes of WHO meeting on malaria case management in the private sector
Andre Tchouatue - Briefing on SMC Task Force meeting

https://www.youtube.com/watch?v=NNMVoecblFo
Pfhrp2/3 deletions

False-negative RDT results and *P. falciparum* histidine-rich protein 2/3 gene deletions

MAY 2019 (REV SEPTEMBER 2017 AND JULY 2019) INFORMATION NOTE

TARGET READERSHIP
National malaria control programme managers and train implementing partners, procurement agencies, national regulatory authorities for in vitro diagnostics and manufacturers of malaria rapid diagnostic tests (RDTs).

PURPOSE
To provide updated information on the implications of reports of histidine-rich protein 2/3 (*pfhrp2*/*pfhrp3*) gene deletions in *Plasmodium falciparum* parasites for case management and to advise on procedures for investigating suspected false-negative RDT results.

BACKGROUND
Most of the currently available commercial RDTs work by detecting a specific protein expressed only by *P. falciparum*, called HRP-2, in the blood of people infected with *falciparum* malaria. The antibodies in the test strip recognize the HRP-2 antigen but may cross-react with protein expressed by another member of the RBP gene family, PfHRP-1, because of the strong similarity of the amino acid sequence. The general preference for HRP-2 based RDTs in procurement is due largely to the finding in some studies that they are more sensitive and heat-stable than HRP-1 that detect other malarial antigens, such as plasmodium lactate dehydrogenase (pLDH) – part of Pfhrp2/3 specificity – or other species.

Workshop with 5 countries in SSA - May 2019

Revised versions before end 2019

Surveillance

- All patients have 2nd RDT (or microscopy) and DBS collected
- No informed consent
- No long term storage of material for research purposes
- Discard samples that are not going to be analyzed for pfhrp2/3 deletions

Master Protocol (research)

- All patients provided informed consent for second RDT (or microscopy) and DBS – as it is ‘non-routine’
- Separate consent for long term storage and future research
- Discard samples that will not be analyzed and no long term storage consent given

\textit{GF included \textit{pfhrp2/3} deletion survey in technical manual for new round of funding allocations}
Currently, not for policy making in majority of cases.

Surveys/studies need to measure prevalence of pfhrp2/3 deletions causing ‘false’ negative RDTs amongst symptomatic patients – **clinically significant** deletions

Threshold for change is prevalence of pfhrp2/3 deletions causing ‘false’ negative RDTs is >5% (and the lower limit of the 95% CI is above 5%).
<table>
<thead>
<tr>
<th>Pf/Pv</th>
<th>Meriscreen Malaria Pf/Pv Ag</th>
<th>MFLRDPD-02</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pf</td>
<td>ParaHIT F Ver. 1.0 Rapid Test for Pf</td>
<td>55IC104-50</td>
</tr>
<tr>
<td>Pf</td>
<td>SD Bioline Malaria Ag Pf (HRP2/pLDH)</td>
<td>05FK90</td>
</tr>
<tr>
<td>Pf</td>
<td>SD Bioline Malaria Ag Pf</td>
<td>05FK50</td>
</tr>
<tr>
<td>Pf/Pv</td>
<td>SD Bioline Malaria Ag Pf/P.v</td>
<td>05FK80</td>
</tr>
<tr>
<td>Pf/Pan</td>
<td>SD Bioline Malaria Ag Pf/Pan</td>
<td>05FK60</td>
</tr>
<tr>
<td>Pan</td>
<td>CareStart™ Malaria PAN (pLDH) Ag RDT</td>
<td>RMNM-02571</td>
</tr>
<tr>
<td>Pf</td>
<td>CareStartMalaria Pf (HRP2/pLDH)</td>
<td>RMPM-02571</td>
</tr>
<tr>
<td>Pf/Pv</td>
<td>CareStart™ Malaria Pf/P.v (HRP2/pLDH) Ag Combo</td>
<td>RMVM-02571</td>
</tr>
<tr>
<td>Pf</td>
<td>CareStart Malaria Pf (HRP2) Ag</td>
<td>RMOM-02571</td>
</tr>
<tr>
<td>Pf</td>
<td>First Response Malaria AB Pf (HRP2)</td>
<td>I13FRC25</td>
</tr>
<tr>
<td>Pf/Pan</td>
<td>CareStart™ Malaria Pf/PAN (HRP2/pLDH) Ag Combo RDT</td>
<td>RMRM-02571</td>
</tr>
<tr>
<td>Pf/Pv</td>
<td>SD BIOLINE Malaria Ag P.f/P.f/P.v</td>
<td>05FK120</td>
</tr>
<tr>
<td>Pf/Pv</td>
<td>First Response® Malaria Ag. P.f./P.v. Card test</td>
<td>PI19FRC25</td>
</tr>
<tr>
<td>Pf/Pan</td>
<td>First Response® Malaria Ag. pLDH/HRP2 Combo Card Test</td>
<td>PI16FRC</td>
</tr>
<tr>
<td>Pf</td>
<td>First Response® Malaria Ag P. falciparum (HRP2) Card Test</td>
<td>PI13FRC</td>
</tr>
<tr>
<td>Pf</td>
<td>AdvDx Malaria Pf Rapid Malaria Ab Test</td>
<td>RK-MAL-AD-004-025</td>
</tr>
<tr>
<td>Pf</td>
<td>Alere Malaria Ag Pf (NXTEK)</td>
<td>05FK140</td>
</tr>
</tbody>
</table>

18 WHO PQ’d RDTs:
- 7 HRP2 only,
- 5 HRP2-PvpLDH,
- 3 HRP2-PanpLDH
- 2 HRP2-PfpLDH
- 1 Pan-pLDH
Guidance for manufacturers

Quality control of malaria RDTs at the point of care remains a challenge

Universal controls are problematic due to variable reactivity with RDTs

Series of protocols to help manufacturers develop and validate controls for mRDTs

https://apps.who.int/iris/bitstream/handle/10665/326092/WHO-CDS-GMP-2019.08-eng.pdf?ua=1
• Tafenoquine a single-dose, 8 aminoquiniline, to prevent relapse in *P. vivax* registered in USA, Australia and Brazil (first endemic country)

• Restricted to use in patients with ≥ 70% of normal G6PD activity, therefore, quantitative G6PD testing is required.

• POC quantitative G6PD tests expected to be submitted to WHO PQ Q2 2020

• WHO Guideline Development for medicine and diagnostic done in parallel and aligned with WHO prequalification and Essential Medicines and Diagnostic Lists.
• In due time, the Global Malaria Programme will revise the Guidelines for the treatment of malaria based on new information available.

• For further information, please contact:
 • Dr Pedro L. Alonso, Director, Global Malaria Programme (alon sop@who.int)
 • Ms Emer Cooke, Head, Regulation of Medicines and other Health Technologies (cookee@who.int)
The WHO Technical Expert Group on malaria Chemotherapy in December 2017, as Guidelines Development Group generated the following recommendation: “Artemisinin combination treatments should be used to treat malaria in pregnant women in the first trimester of pregnancy except where the partner drug is contraindicated as with AS+SP.”

The recommendation was endorsed by MPAC in July 2018.

The recommendation is awaiting clearance by the Director of GMP.
ACTs prequalified by WHO (last updated on 05.11.2019) - new generics

<table>
<thead>
<tr>
<th>API</th>
<th>Strength (mg) and Formulation</th>
<th>Ajanta</th>
<th>Alfasigma</th>
<th>Cipla</th>
<th>DNDi</th>
<th>Gujilin</th>
<th>Ipca</th>
<th>Mcleods</th>
<th>Micro Labs</th>
<th>Mylan</th>
<th>Novartis</th>
<th>Sanofi</th>
<th>Shin Poong</th>
<th>Strides</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL</td>
<td>20/120 dispersible tablets</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20/120 tablets</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>40/240 tablets</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60/360 tablets</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>80/480 tablets</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>AS + AQ</td>
<td>50 + 150 Co-Blister</td>
<td></td>
</tr>
<tr>
<td>ASAQ</td>
<td>67.5/25 Fixed-dose combination (FDC)</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>135/50 FDC</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>270/100 FDC</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ASMQ</td>
<td>25/50 tablets</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100/200 tablets</td>
<td></td>
</tr>
<tr>
<td>ASSP</td>
<td>50 + 500/25 tablet</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>100 + 500/25 tablet</td>
<td></td>
</tr>
<tr>
<td>ASPyr</td>
<td>20/60 granules for oral suspension</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>60/180 tablets</td>
<td></td>
</tr>
<tr>
<td>DHA/PPQ</td>
<td>20/160 tablet</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>40/320 tablet</td>
<td></td>
</tr>
</tbody>
</table>
On 19 November 2019, WHO Prequalification Team - medicines (PQTm) added the products below to its “List of Prequalified Products”.

Products added:

- **HA707** - Dolutegravir/Lamivudine/Tenofovir disoproxil fumarate - 50mg/300mg/300mg - Tablet - Laurus Labs Limited – INDIA
- **MA131** - Dihydroartemisinin/Piperaquine phosphate (as tetrahydrate) - 40mg/320mg - Film-coated tablet - Guilin Pharmaceutical Co Ltd – CHINA
- **MA139** - Dihydroartemisinin/Piperaquine - 40mg/320mg - Dispersible tablet - Guilin Pharmaceutical Co Ltd – CHINA
- **MA140** - Dihydroartemisinin/Piperaquine phosphate (as tetrahydrate) - 80mg/640mg - Film-coated tablet - Guilin Pharmaceutical Co Ltd – CHINA
- **MA141** - Dihydroartemisinin/Piperaquine - 20mg/160mg - Dispersible tablet - Guilin Pharmaceutical Co Ltd – CHINA
ZÉRO. PALU! JE M'EN GAGE