Modification of unimproved housing for equitable protection against mosquitoes

Olukayode Odufuwa oodufuwa@ihi.or.tz

19th Annual RBM Vector Control Working Group Meeting

Sub-Saharan Africa needs round the clock protection against multiple disease vectors

Source: CDC and WHO

House modification can be done cheaply

Mosquito house entry reduced by closing all available gaps in homes with

treated netting

- Eaves
- Windows
- Wall holes

Semi field system testing of insecticide netting

Fig. 1a: Semi-field system

Fig. 1b: Experimental hut built in the SFS

Fig. 1c: Large netting suspended on the hut

Fig. 1d: Experimental hut built in the SFS

Fig. 1e: Large netting suspended on the hut

Entomological data in indicate efficacy against *Anopheles, Culex* and *Aedes*

Species	Test items	Total recaptured (N)	Total mortality (n)	%Arithmetic mean (95% CI)	Odds ratio (95% CI)	P-value
	Aged Olyset Plus	3,209	1,748	54.9 (50.0 – 59.8)	1.00	
Overall (All mosquitoes)	Aged ITS	3,424	1,670	50.6 (45.7 – 55.5)	$0.80 \ (0.59 - 1.08)$	0.141
	New ITS	3,027	2,002	67.6 (62.4 – 72.8)	2.25 (1.65-3.06)	<0.0001
	No treatment	3,710	204	5.6 (4.7 – 6.5)	$0.03 \ (0.02 - 0.04)$	<0.0001
An. arabiensis (Kingani strain)	Aged Olyset Plus	805	561	68.0 (60.9, 75.2)	1.00	
	Aged ITS	848	542	63.9 (56.5, 71.3)	0.82 (0.62 - 1.10)	0.183
	New ITS	749	609	81.8 (76.3, 87.3)	2.36(1.17 - 3.26)	< 0.0001
	No treatment	898	64	7.5 (5.4, 9.6)	$0.03 \ (0.02 - 0.04)$	< 0.0001
An. funestus (FUMOZ strain)	Aged Olyset Plus	733	565	78.7 (72.0, 85.3)	1.00	
	Aged ITS	773	500	65.7 (57.1, 74.3)	0.44(0.27-0.72)	0.001
	New ITS	717	620	87.9 (81.5, 94.4)	2.41(1.40 - 4.16)	0.002
	No treatment	963	52	5.5 (3.7, 7.3)	$0.01 \ (0.00 - 0.01)$	< 0.0001
<u>Cx.</u> quinquefasciatus (Bagamoyo strain)	Aged Olyset Plus	823	308	36.1 (28.7, 43.5)	1.00	
	Aged ITS	901	323	36.2 (26.6, 45.8)	0.97 (0.65 - 1.43)	0.859
	New ITS	800	341	43.3 (33.3, 53.3)	1.39(0.94 - 2.06)	0.103
	No treatment	903	47	5.2 (3.5, 6.9)	0.07(0.04 - 0.12)	< 0.0001
Ae. aegypti (Bagamoyo strain)	Aged Olyset Plus	848	314	36.8 (28.7, 44.9)	1.00	
	Aged ITS	902	305	36.7 (28.1, 45.2)	0.98 (0.60 - 1.61)	0.950
	New ITS	761	432	57.5 (47.2, 67.7)	3.01(1.82 - 4.96)	< 0.0001
	No treatment	946	41	4.3 (2.8, 5.8)	0.06 (0.03 – 0.11)	< 0.0001

Entomological data in mathematical models indicate substantial improvements relative to pyrethroid PBO ITNs

Installation was fast, feasible and acceptable

Variables	Arithmetic mean (95% Confidence Interval)		
N=206			
Installation time (hours and minutes)	01:04 (00:01 - 04:26)		
Average fabric per household (metres)			
Total	29.5 (1.6 – 64.2)		
Eaves	24.1 (0.8 – 60.2)		
Windows	3.4(0.3-17.2)		
Overall wall holes per household	2.0(0-20.5)		
Willingness to purchase material for self-installation	% (n)		
Yes	95.3 (181/190)		
No	4.2 (8/190)		
Don't know	0.5 (1/190)		

Take home messages

- House screening has the potential to protect against multiple vector borne diseases in unimproved houses
- Equally protect all household residents
- High user acceptance
- Cost in line with ITNs (\$1.29 per person year)
- More flexible in regards to choice of new chemistries
- Less disruptive and longer lasting than IRS

Thank you all for listening

