Expanding vector control for Humanitarian Emergencies

Michael Macdonald, Sc.D.

Notice the two torn LLINs on this shelter.
RBM Vector Control in Humanitarian Emergency Initiative

Mission Statement

To reduce human suffering and death from vector-borne diseases in Humanitarian Emergencies by:

a) improving delivery, uptake, integration and evaluation of existing vector surveillance and control tools;

b) facilitating the development of an evidence-base and uptake of supplementary and emerging tools.

https://endmalaria.org/vector-control-humanitarian-emergencies
Selected tools with high potential

- Passive emanators
- Targeted IRS
- Larval control
- ATSBs
- Treated textiles

Operational Research

Ready for Deployment
Passive Emanators (spatial repellents)

• Strong evidence of community impact beyond “repellency”
• Reduction in vectorial capacity even in temporary shelters

Temporary shelter use-case
Linking tool development for outdoor transmission to Humanitarian Emergencies

Photo UNHCR

Photo MSF/Cambodia

Outdoor transmission Mekong

Humanitarian Emergency
Field assessment in Northern Nigeria

(MENTOR Initiative)
IVCC/UCSF Field trial with topical and passive emanator, etofenprox treated clothing

Passive Emanator Packaging: 2,000 units in a 35 liter case weighing 12 kg
IRS in temporary and emergency shelters

- Expanding sprayable structures to include IDP/refugee temporary shelters and tents
- Practical guidance needed for emergencies.
- **Not all formulations have same residual efficacy on tents and tarpaulins**

MENTOR Initiative South Sudan

MENTOR Initiative Northern Mozambique
Larvicide: improved targeting and delivery

- Multiple country programs, Goodbye Malaria, AGAMal, PMI and others are implementing or piloting larvicide programs plus dozens of others
- Improved targeting technologies (ZZAPP information management)
- Improved wide-area delivery application equipment

<table>
<thead>
<tr>
<th>Obstacle</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Product choice is limited in Africa (but not elsewhere)</td>
<td>• Improve access to all PQ-listed products</td>
</tr>
<tr>
<td>• A general lack of expertise to deliver → risk of wasted resources & perception of low cost-effectiveness</td>
<td>• Platform to share knowledge on products best practice delivery (PAMCA)</td>
</tr>
<tr>
<td></td>
<td>• Update technical manuals and build capacity and experience (including targeting and monitoring methods)</td>
</tr>
</tbody>
</table>
ATSB: Opening a new product class

Potential in camp settings where vegetation and alternate nectar sources are reduced

RCTs are running in Zambia, Kenya and Mali targeting a submission to VCAG & PQ by end of 2024

<table>
<thead>
<tr>
<th>Updates to VCAG and PQ</th>
<th>Start of Kenya and Mali RCTs</th>
<th>Zambia RCT interim analysis</th>
<th>Kenya and Mali interim analyses</th>
<th>Update to VCAG spring meeting</th>
<th>Zambia RCT final analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1 22</td>
<td>Q2 22</td>
<td>Q3 22</td>
<td>Q4 22</td>
<td>Q1 23</td>
<td>Q2 23</td>
</tr>
</tbody>
</table>

Access planning and country engagement

Efficacy determinants research

Bait station installation, Zambia. Credit: PATH/MRC

Bait station monitoring, Kenya. Credit: KEMRI

Bait station distribution, Mali. Credit: USTT-B
Etofenprox treated textiles: IVCC/UCSF Semi-field testing Thailand

Much less dermal absorption/ greater wash resistance than permethrin

Discussions with Mitsui Chemicals Crop & Life Solutions, MCCLS (manufacturer), WarmKraft (EPA registrant), for treatment of other textiles, blankets?
Etofenprox versus permethrin

Superior wash resistance compared to permethrin

- The following chart shows the difference between etofenprox (blue) and permethrin (green) bite protection after extended washes.

After 75 washes, etofenprox-treated textiles retain 39 percent of their original coating.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Permethrin</th>
<th>Etofenprox</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute Oral Toxicity LD50</td>
<td>$>2,700 \text{ mg/kg}$</td>
<td>$>5,000 \text{ mg/kg}$</td>
</tr>
<tr>
<td>Acute Dermal Toxicity LD50</td>
<td>$>2,000 \text{ mg/kg}$</td>
<td>$>5,000 \text{ mg/kg}$</td>
</tr>
<tr>
<td>Acute Inhalation Toxicity LC50</td>
<td>$>2.6 \text{ mg/L}$</td>
<td>$>2.1 \text{ mg/L}$</td>
</tr>
<tr>
<td>Sub-chronic Dermal Toxicity</td>
<td>500 mg/kg/day (rat)</td>
<td>No systemic toxicity</td>
</tr>
<tr>
<td>Subchronic Inhalation Toxicity NOAEL (rats)</td>
<td>11 mg/kg/day</td>
<td>10.6 mg/kg/day</td>
</tr>
<tr>
<td>Acute neurotoxicity NOAEL (rats)</td>
<td>25 mg/kg/day</td>
<td>2,000 mg/kg</td>
</tr>
<tr>
<td>Carcinogenicity</td>
<td>Likely to be carcinogenic to humans (according to the U.S. EPA)</td>
<td>Not Likely to be carcinogenic</td>
</tr>
</tbody>
</table>
Expanded toolbox for Vector Control in Humanitarian Emergencies

- Passive Emanators (Spatial Repellents)
- IRS on Temporary Shelters
- Improved targeting and delivery of larvicides
- Attractive Targeted Sugar Baits
- Etofenprox Treated Textiles