Development of Laboratory Tests for the Physical Durability of LLINs

Stephen C. Smith, Ph.D.
Centers for Disease Control and Prevention
Division of Parasitic Diseases and Malaria
Atlanta, GA, USA

Jan P. Ballard, Ph.D.
Teresa J. White
North Carolina State University, College of Textiles
Raleigh, NC, USA

Presented at:
4th Durability of LLINs in the Field Work Stream Meeting
8th Annual RBM Vector Control Working Group Meeting
Geneva – 29 January 2013
How Textile Structure Influences Durability

- LLINs are made by warp knitting.
- Yarns oriented lengthwise through the fabric.
 - Analogous to “grain” in wood.
- Strength and tearing properties are directional.
 - Tears tend to run parallel to yarn orientation.
Current LLIN Yarn Patterns

Polyester and Polypropylene (multifilament yarns)

Polyethylene (monofilament yarns)
Raveling

- Severing one or more yarns can lead to a process of sequential loop disengagement.
 - Small holes get larger.
 - Hole enlargement occurs in one direction.
 - No additional fiber breaks.

process of raveling after a single yarn cut
Typical LLIN Damage

- Oval holes
- "Ladders" caused by raveling
- Yarn orientation
Hypothetical Deterioration Pathways

- No Holes
- Large Holes and Tears
- Small Holes
- Raveling
- Yarn Break
- Yarn Break, Cut, and/or Melt

Intact Net

- Damaged Net

- Large Holes and Tears
- Raveling
- Yarn Break

Yarn Break, Cut, and/or Melt
Potentially Useful Tests

- Susceptibility to initial hole formation.
 - Snagging (tensile breaks)
 - Cutting
 - Melting
- Strength loss after hole formation.
- Resistance to raveling.
NETS INVESTIGATED

<table>
<thead>
<tr>
<th>NET</th>
<th>YARN</th>
<th>POLYMER</th>
<th>FILAMENT</th>
<th>DENIER</th>
<th>WEIGHT (g/m²)</th>
<th>KNITTING PATTERN</th>
<th>UNIT CELL</th>
</tr>
</thead>
<tbody>
<tr>
<td>LLINs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DawaPlus</td>
<td></td>
<td>PET</td>
<td>multi</td>
<td>100</td>
<td>42.80</td>
<td>A</td>
<td>2.84</td>
</tr>
<tr>
<td>Interceptor</td>
<td></td>
<td>PET</td>
<td>multi</td>
<td>75</td>
<td>28.94</td>
<td>A</td>
<td>2.70</td>
</tr>
<tr>
<td>PermaNet 2.0</td>
<td></td>
<td>PET</td>
<td>multi</td>
<td>100</td>
<td>41.84</td>
<td>A</td>
<td>3.33</td>
</tr>
<tr>
<td>LifeNet</td>
<td></td>
<td>PP</td>
<td>multi</td>
<td>100</td>
<td>41.27</td>
<td>A</td>
<td>2.20</td>
</tr>
<tr>
<td>PermaNet 3.0 (upper side)</td>
<td></td>
<td>PET</td>
<td>multi</td>
<td>75</td>
<td>32.46</td>
<td>A</td>
<td>1.95</td>
</tr>
<tr>
<td>PermaNet 3.0 (roof)</td>
<td></td>
<td>PE</td>
<td>mono</td>
<td>100</td>
<td>39.00</td>
<td>B</td>
<td>2.48</td>
</tr>
<tr>
<td>DuraNet</td>
<td></td>
<td>PE</td>
<td>mono</td>
<td>145</td>
<td>48.03</td>
<td>B</td>
<td>3.44</td>
</tr>
<tr>
<td>NetProtect</td>
<td></td>
<td>PE</td>
<td>mono</td>
<td>118</td>
<td>37.62</td>
<td>B</td>
<td>3.65</td>
</tr>
<tr>
<td>Olyset Net</td>
<td></td>
<td>PE</td>
<td>mono</td>
<td>150</td>
<td>46.89</td>
<td>B</td>
<td>5.88</td>
</tr>
<tr>
<td>Iguana Net (military)</td>
<td></td>
<td>PET</td>
<td>multi</td>
<td></td>
<td>55.65</td>
<td>C</td>
<td>1.34</td>
</tr>
<tr>
<td>Marquisette Net (retail)</td>
<td></td>
<td>PET</td>
<td>multi</td>
<td>75</td>
<td>63.27</td>
<td>D</td>
<td>3.70</td>
</tr>
<tr>
<td>Noseeum Net (retail)</td>
<td></td>
<td>PET</td>
<td>multi</td>
<td>75</td>
<td>69.49</td>
<td>A</td>
<td>1.19</td>
</tr>
<tr>
<td>non-LLINs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pattern A

Pattern B

Pattern C

Pattern D

(Images of patterns are shown)
Resistance to tearing by snagging
(Skovmand and Bosselmann, 2011)

Resistance to tearing by snagging (CDC/NCState)

DuraNet and Olyset are best performers in this test.
Strength loss after yarn severing

Polyester/Polypropylene nets perform best in this test.
Raveling resistance

- **Martindale Abrasion Tester**

 - Top platen Oscillates Specimen uncut
 - Bottom platen Stationary Specimen cut

 Side view of test platens showing net specimens in place.

 Specimen showing enlarged hole due to raveling.

 Hole growth in 12 cut Olyset samples

 Cut A in **RED**; Cut B in **BLUE**

- Only Olyset Nets showed tendency to ravel in this test.

- Rate of hole enlargement was inconsistent.

- Further test development is needed.
Consequences

- Hole formation and enlargement likely involves *multiple mechanisms*.
- It’s unlikely that a single test will be able to predict durability. Instead, a *combination of tests* will be needed.
 - Net performance depends on the conditions the net is exposed to.
- Nets will get holes: designing more durable LLINs should focus on *resisting hole enlargement*.
- Users should be encouraged to *repair even small holes* and not wait for holes to get large.
- *Correlation with field results* is needed.