

Combating malaria with the mosquito symbiont Chromobacterium anophelis sp.nov cell free bioactive supernatant

Jacques Gnambani, researcher assistant, IRSS/DRO; Burkina Faso

19th Annual Meeting Vector Control Working Group

15th - 17th April, 2024 ; Radisson Blu Hotel, Kigali , Rwanda

In 2022, the number of malaria cases and related deaths was significantly higher than 2019

Malaria Disease Control: Challenges and opportunities

- □ Main challenge: residents being frequently reinfected
- ✓ Altered vector ecology and behavior,
- ✓ Most anti-malarial drugs are not effective in gametocytes killing,
- ✓ RTS,S malaria vaccine has a modest effect on clinical and severe malaria, it is unlikely to have major impact on transmission.

Game changer for malaria control and elimination

- Transmission blocking vaccine,
- Gene-drive technology,
- Transmission blocking microbiome.

Novel technologies emerging for use in mosquito control

Using Biocontrol to Kill Mosquitoes:

- ✓ Plant-Borne Mosquitocides, Repellents and Oviposition Deterrents;
- ✓ Mosquito Predators ;
- ✓ *Bti, Chromobacterium sp* and Entomopathogenic Fungi;

Releasing Mosquitoes for Disease Control:

- Wolbachia Endosymbiotic Bacteria ;
- The Sterile Insect Technique ;
- Genetically Modified Mosquitoes ;

Non-insecticide based strategies

Mosquito biocontrol strategies targeting different stages of the mosquito lifecycle ⁴

Mosquitocidal property of *Chromobacterium anophelis sp.nov*: Mosquito survival, fecundity, and fertility

Gnambani et al. Malar J (2020) 19:352 https://doi.org/10.1186/s12936-020-03420-4

Malaria Journal

Open Access

RESEARCH

Infection of highly insecticide-resistant malaria vector Anopheles coluzzii with entomopathogenic bacteria Chromobacterium violaceum reduces its survival, blood feeding propensity and fecundity

Edounou Jacques Gnambani^{1,2}, Etienne Bilgo¹*[©], Adama Sanou², Roch K. Dabiré¹ and Abdoulaye Diabaté^{1*}

Day post-infection

Survival curves of *An. Coluzzii* mosquitoes exposed to different concentrations of *C. anophelis sp.nov*

host-seeking behavior design using guinea pigs and a tunnel choice chamber with nine small holes cut into a barrier between compartments

Impact of *C. anophelis sp.nov* infections on ovarian follicles and fertilized egg maturations in *An. coluzzii* mosquitoes. Legend: Eggs of an uninfected

female (**a**); Follicles and fertilized eggs of infected female with *C. anophelis sp.nov* (**b–d**); non-viable eggs and larvae of an infected female (**e**)

Effect of *An. coluzzii* mosquito reproductive potential by symbiont *C. anopheles* bacteria

Gnambani et al. Malaria Journal (2023) 22:122 https://doi.org/10.1186/s12936-023-04551-0	Malaria Journal
RESEARCH	Open Access

Infection of the malaria vector Anopheles coluzzii with the entomopathogenic bacteria Chromobacterium anophelis sp. nov. IRSSSOUMB001 reduces larval survival and adult reproductive potential

Edounou Jacques Gnambani^{1,2,3}, Etienne Bilgo^{1,2,3*}, Roch K. Dabiré^{1,2,3}, Adrien Marie Gaston Belem⁴ and Abdoulaye Diabaté^{1,2,3*}

An. coluzzii mosquito wing size

An. coluzzii mosquito insemination status

Effects of *C. anophelis* sp.nov; infection on insemination rates of female mosquitoes from different crossing types. *IM:* infected males, *IF:* Infected Females, *nIM:* noninfected males, *nIF:* non-infected females

Identification of Chromobacterium sp.nov: DNA sequencing

Potential effectors of C. anophelis sp.nov., virulence

Subsystem (Subsystems, Genes) METABOLISM (96, 771)

- PROTEIN PROCESSING (44, 230)
- STRESS RESPONSE, DEFENSE, VIRULENCE (35, 146)
- ENERGY (33, 275)
- DNA PROCESSING (19, 82)
- MEMBRANE TRANSPORT (17, 123)
- CELLULAR PROCESSES (15, 188)
- RNA PROCESSING (14, 73)
- CELL ENVELOPE (5, 35)
- MISCELLANEOUS (4, 14)
- REGULATION AND CELL SIGNALING (2, 12)

Hydrogen molecule (cyanide)

GENOME SEQUENCES

Draft Genome of a Member of the Family Chromobacteriaceae Isolated from Anopheles Mosquitoes in West Africa

[©]Keenan Stephens,^a [©]Edounou Jacques Gnambani,^b [©]Etienne Bilgo,^b [©]Abdoulaye Diabate,^b [©]Scott Soby^{a,c}

Bacteria cell-free supernatant as sources of metabolites for mosquitocidal and parasitological properties

✓ Mosquito symbiont C. anopheles bioactive supernatant

Contained for lab and field experiments

An. coluzzii mosquito feeding on *C. anophelis* cell-free supernatant

Field experiments

Laboratory experiments

Results

Bacteria cell-free supernatant as sources of metabolites for mosquitocidal and parasitological properties

✓ Effect of An. coluzzii mosquito survival by symbiont C. anopheles bioactive cell-free supernatant

Results

Bacteria cell-free supernatant as sources of metabolites for mosquitocidal and parasitological properties

✓ Effect of symbiont C. anopheles bioactive cell-free supernatant on parasitological properties

Bacterial inhibitor(s) of Plasmodium development

Conclusions and Future Perspectives

- Biocontrol strategies for mosquito-borne diseases are needed to help reduce the prolonged application of insecticides that are currently used as the primary method for mosquito control;
- The pathogenic bacteria can be extensively used due to its ability to selectively kill mosquito, may be effective in future control programs;
- Eco-friendly, safe, and sustainable methods should be developed that can target a range of different mosquito species.

THANK YOU

