Integrating vector and human behavioral data for malaria prevention: an interdisciplinary approach

VCWG 19th Annual Meeting
Kigali, Rwanda
April 16, 2024

Kaci McCoy, Allison Hendershot, Gabrielle Hunter, Shelby Cash, Sarah Zohdy, Jenny Carlson Donnelly, Joseph Millward, April Monroe
Introduction

• **Rationale**: Integrating human behavioral data with data on malaria vector behavior can help to identify patterns of human exposure to malaria vectors and identify gaps in protection.

• **Research Question**: How can existing Malaria Behavior Survey (MBS) data on human behavior and existing entomological monitoring data be integrated using recognized methods to calculate indicators of vector-human interaction?

• **Output**: Process and lessons learned for using these data sources to inform programmatic decision making on vector control procurement and SBC strategies.
"Introduction

• Rationale: Integrating human behavioral data with data on malaria vector behavior can help to identify patterns of human exposure to malaria vectors and identify gaps in protection.

• Research Question: How can existing Malaria Behavior Survey (MBS) data on human behavior and existing entomological monitoring data be integrated using recognized methods to calculate indicators of vector-human interaction?

• Output: Process and lessons learned for using these data sources to inform programmatic decision making on vector control procurement and SBC strategies.

Methods and indicators for measuring patterns of human exposure to malaria vectors

April Monroe1,2,3,*, Sarah Moore2,3,4, Fredros Okumu4,5,6, Samson Kiware4, Neil F. Lobo7, Hannah Koenker1, Ellie Sherrard-Smith8, John Gimnig9 and Gerry F. Killeen4,10,11

Patterns of human exposure to malaria vectors in Zanzibar and implications for malaria elimination efforts

April Monroe1,2,3,*, Dickson Msaky4, Samson Kiware6, Brian B. Tarimo6, Sarah Moore2,3,4, Khamis Haji5, Hannah Koenker1, Steven Harvey5, Marceline Finda6, Halfan Ngowo4,9, Kimberly Mihayo4, George Greer7, Abdullah Ali7 and Fredros Okumu4,8,9"
Introduction

• **Rationale**: Integrating human behavioral data with data on malaria vector behavior can help to identify patterns of human exposure to malaria vectors and identify gaps in protection.

• **Research Question**: How can existing Malaria Behavior Survey (MBS) data on human behavior and existing entomological monitoring data be integrated using recognized methods to calculate indicators of vector-human interaction?

• **Output**: Process and lessons learned for using these data sources to inform programmatic decision making on vector control procurement and SBC strategies.
Vector-Human Data Integration

Methods
Methods: Data Integration

Monroe et al., 2020

<table>
<thead>
<tr>
<th>Data Input:</th>
<th>Reported proportion of human population that used an ITN while asleep</th>
<th>Hourly nighttime indoor and outdoor human biting rates</th>
<th>Personal protection by ITN while in-use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source: Malaria Behavior Survey</td>
<td>Malaria Behavior Survey</td>
<td>Entomological Monitoring (HLCs)</td>
<td>Experimental Hut Trials</td>
</tr>
<tr>
<td>Population: Adults (aged 15-49) of participating HHs who stayed in the house the night prior to survey and responded to the individual questionnaire</td>
<td>Adults and children of participating HHs who stayed in house the night prior to survey</td>
<td>HLC data collectors</td>
<td>EHT volunteers</td>
</tr>
<tr>
<td>Timing: May - July 2021</td>
<td>May - July 2021</td>
<td>June 2021</td>
<td>June - September 2017</td>
</tr>
</tbody>
</table>
Methods: Data Integration

The MBS integrated a standard set of questions to the individual questionnaire, which can be used to calculate human location estimates:

- Approximately at what time did you go to sleep yesterday?
- Approximately at what time did you wake up today?
- Did you sleep indoors or outdoors?
- What time did you go indoors for the evening?
- What time did you go outdoors for the morning?

|---|---|---|---|

Monroe et al., 2020
Methods: Data Integration

Monroe et al., 2020

<table>
<thead>
<tr>
<th>Data Input:</th>
<th>Hourly nighttime indoor and outdoor human location estimates</th>
<th>Reported proportion of human population that used an ITN while asleep</th>
<th>Hourly nighttime indoor and outdoor human biting rates</th>
<th>Personal protection by ITN while in-use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source:</td>
<td>Malaria Behavior Survey</td>
<td>Malaria Behavior Survey</td>
<td>Entomological Monitoring (HLCs)</td>
<td>Experimental Hut Trials</td>
</tr>
<tr>
<td>Population:</td>
<td>Adults (aged 15-49) of participating HHs who stayed in the house the night prior to survey and responded to the individual questionnaire</td>
<td>Adults and children of participating HHs who stayed in house the night prior to survey</td>
<td>HLC data collectors</td>
<td>EHT volunteers</td>
</tr>
<tr>
<td>Timing:</td>
<td>May - July 2021</td>
<td>May - July 2021</td>
<td>June 2021</td>
<td>June - September 2017</td>
</tr>
</tbody>
</table>
Vector-Human Data Integration

Results and Interpretations
Results & Interpretation

- Data integration produces key indicators:
 - Directly measured biting rate and human location
 - Behavior-adjusted biting rate for an unprotected individual
 - Behavior-adjusted biting rate for an ITN user
 - Population-wide mean exposure to vector bites
Results & Interpretation

A. Behavior-adjusted biting rate for an ITN user

- Vector bites prevented by using an ITN during sleeping hours
- Vector bites occurring indoors while asleep
- Vector bites occurring indoors while awake
- Vector bites occurring outdoors

B. Population-wide mean exposure, given ITN use

- Population-wide mean personal protection provided by reported level of ITN use
- Vector bites occurring indoors while asleep
- Vector bites occurring indoors while awake
- Vector bites occurring outdoors
Results & Interpretation

A

Behavior-adjusted biting rate for an ITN user

- Vector bites prevented by using an ITN during sleeping hours
- Vector bites occurring indoors while asleep
- Vector bites occurring indoors while awake
- Vector bites occurring outdoors

B

Population-wide mean exposure, given ITN use

- Population-wide mean personal protection provided by reported level of ITN use
- Vector bites occurring indoors while asleep
- Vector bites occurring indoors while awake
- Vector bites occurring outdoors
Results & Interpretation

Suggests gap in protection around ITN access and effectiveness
Results & Interpretation

• Other types of gaps in protection that may be characterized through these methods:
 • Implementation quality/access
 • Behavioral gaps in intervention use
 • Intervention effectiveness
 • Limits to protection current tools can provide
Vector-Human Data Integration

Lessons Learned, Remaining Gaps, and Limitations
Remaining Gaps and Limitations

- Data specific to peri-domestic space and individual behaviors

- Calculations do not directly factor in IRS or community effect on malaria transmission

- Entomological data available did not calculate infection rates or associated risk of malaria transmission (may be available in other contexts)

- Averaged vector behavior across multiple sites
Lessons Learned from Leveraging Routine Data Collection

• Human behavioral data routinely captured through the MBS can be linked to entomological data to identify patterns of vector-human exposure

• Other data sources provide important context to interpret the results
 • Net durability monitoring reports
 • Other ITN use and access estimates (e.g., from MIS) and ITN use:access ratio
 • Other human behavior observations

• Timing of data collection is important, both in determining sufficient overlap in data sources as well as obtaining the most up to date data inputs

• Data collection and integration can be planned concurrently, in advance of decision-making to provide of-the-moment gap identification
Future Applications

• Apply proof-of-concept learnings and process to other countries
 • Large sample sizes from MBS allow patterns to be identified at a large scale
 • At time of planning for MBS is good time to identify where there may be overlapping entomological surveillance for timely integration

• Potential applications of results:
 • Social and behavior change activities to increase ITN use and care
 • Guidance on selection of vector control tools best suited for the context
Thank you!

For more information, please contact

Kaci McCoy
Program Officer
kaci.mccoymccoy@jhu.edu

www.breakthroughactionandresearch.org

@BreakthroughAR @Breakthrough_AR