Integrating vector and human behavioral data for malaria prevention: an interdisciplinary approach

VCWG 19th Annual Meeting Kigali, Rwanda April 16, 2024

Kaci McCoy, Allison Hendershot, Gabrielle Hunter, Shelby Cash, Sarah Zohdy, Jenny Carlson Donnelly, Joseph Millward, April Monroe

Introduction

- <u>Rationale</u>: Integrating human behavioral data with data on malaria vector behavior can help to identify patterns of human exposure to malaria vectors and identify gaps in protection
- **Research Question**: How can existing Malaria Behavior Survey (MBS) data on human behavior and existing entomological monitoring data be integrated using recognized methods to calculate indicators of vector-human interaction?
- <u>Output</u>: Process and lessons learned for using these data sources to inform programmatic decision making on vector control procurement and SBC strategies

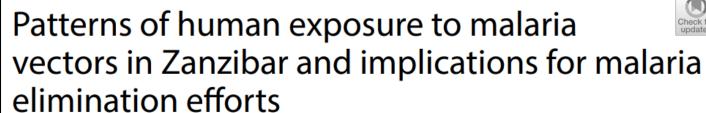
Monroe et al. Malaria Journal (2020) 19:207 https://doi.org/10.1186/s12936-020-03271-z

OPINION

Methods and indicators for measuring patterns of human exposure to malaria vectors

April Monroe^{1,2,3*}, Sarah Moore^{2,3,4}, Fredros Okumu^{4,5,6}, Samson Kiware⁴, Neil F. Lobo⁷, Hannah Koenker¹, Ellie Sherrard-Smith⁸, John Gimnig⁹ and Gerry F. Killeen^{4,10,11}

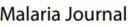
recognized methods to calcula


 Output: Process and lessons programmatic decision makin

RESEARCH

Monroe et al. Malar J

(2020) 19:212


April Monroe^{1,2,3*}, Dickson Msaky⁴, Samson Kiware⁴, Brian B. Tarimo⁴, Sarah Moore^{2,3,4}, Khamis Haji⁵, Hannah Koenker¹, Steven Harvey⁶, Marceline Finda⁴, Halfan Ngowo^{4,9}, Kimberly Mihayo⁴, George Greer⁷, Abdullah Ali⁵ and Fredros Okumu^{4,8,9}

malaria vector behavior rectors and identify

Open Access

Malaria Journal

Open Access

Introduction

- <u>Rationale</u>: Integrating human behavioral data with data on malaria vector behavior can help to identify patterns of human exposure to malaria vectors and identify gaps in protection
- **Research Question**: How can existing Malaria Behavior Survey (MBS) data on human behavior and existing entomological monitoring data be integrated using recognized methods to calculate indicators of vector-human interaction?
- <u>Output</u>: Process and lessons learned for using these data sources to inform programmatic decision making on vector control procurement and SBC strategies

Vector-Human Data Integration

Methods

Methods: Data Integration

Monroe et al., 2020

Data Input:	Hourly nighttime indoor and outdoor human location estimates	Reported proportion of human population that used an ITN while asleep	Hourly nighttime indoor and outdoor human biting rates	Personal protection by ITN while in-use
Source:	Malaria Behavior Survey	Malaria Behavior Survey	Entomological Monitoring (HLCs)	Experimental Hut Trials
Population:	Adults (aged 15-49) of participating HHs who stayed in the house the night prior to survey and responded to the individual questionnaire	Adults and children of participating HHs who stayed in house the night prior to survey	HLC data collectors	EHT volunteers
Timing:	May - July 2021	May - July 2021	June 2021	June - September 2017

Methods: Data Integration

፟፟፟፟፟፟፟፟፟፟፟

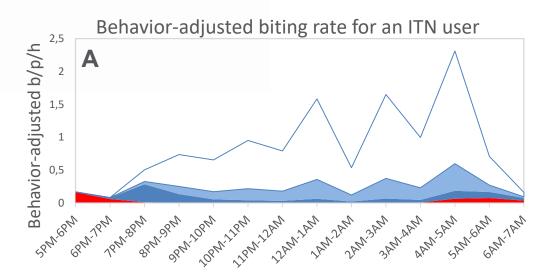
oe et al., 2020 Data Input:	to to rotection by					
Source:	 Approximately at what time did you go to sleep yesterday? Approximately at what time did you wake up today? 					
Population:	r s What time	 Did you sleep indoors or outdoors? What time did you go indoors for the evening? What time did you go outdoors for the morning? 				
Timing:	May - July 2021	May - July 2021	June 2021	June - September 2017		
	RESIDENT'S ARIA INITIATIVE	7	1	Breakthrough ACTION FOR SOCIAL & BEHAVIOR CHANGE		

Methods: Data Integration

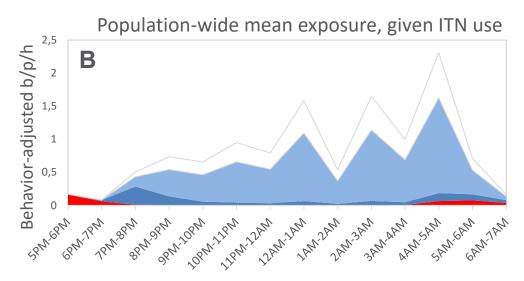
Monroe et al., 2020

Data Input:	Hourly nighttime indoor and outdoor human location estimates	Reported proportion of human population that used an ITN while asleep	Hourly nighttime indoor and outdoor human biting rates	Personal protection by ITN while in-use
Source:	Malaria Behavior Survey	Malaria Behavior Survey	Entomological Monitoring (HLCs)	Experimental Hut Trials
Population:	Adults (aged 15-49) of participating HHs who stayed in the house the night prior to survey and responded to the individual questionnaire	Adults and children of participating HHs who stayed in house the night prior to survey	HLC data collectors	EHT volunteers
Timing:	May - July 2021	May - July 2021	June 2021	June - September 2017

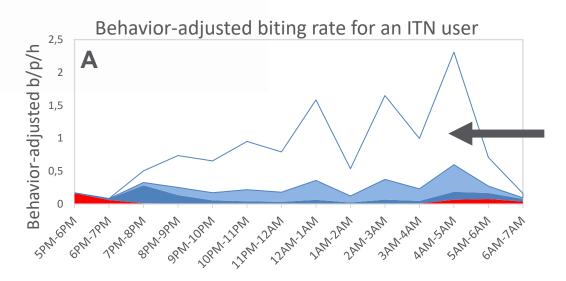
Vector-Human Data Integration


Results and Interpretations

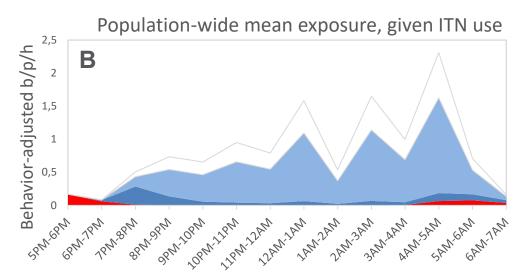
- Data integration produces key indicators:
 - Directly measured biting rate and human location
 - Behavior-adjusted biting rate for an unprotected individual
 - Behavior-adjusted biting rate for an ITN user
 - Population-wide mean exposure to vector bites



Vector bites prevented by using an ITN during sleeping hours
 Vector bites occurring indoors while asleep

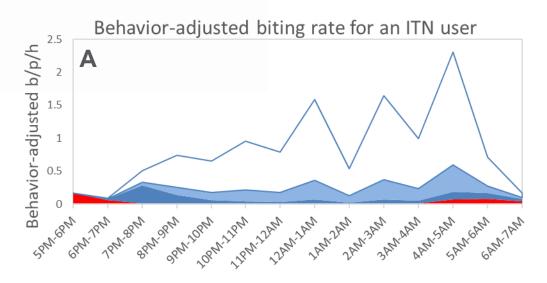

- Vector bites occurring indoors while awake
- Vector bites occuring outdoors

- Population-wide mean personal protection provided by reported level of ITN use
- Vector bites occuring indoors while asleep
- Vector bites occurring indoors while awake
- Vector bites occuring outdoors



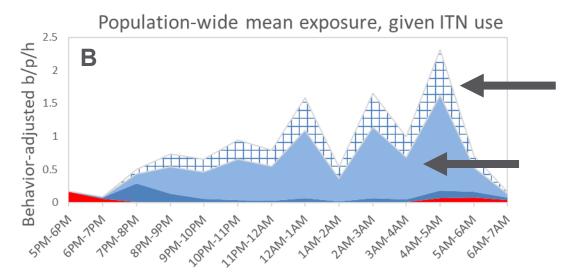
Vector bites prevented by using an ITN during sleeping hours
 Vector bites occurring indoors while asleep

- Vector bites occurring indoors while awake
- Vector bites occuring outdoors



Population-wide mean personal protection provided by reported level of ITN use

- Vector bites occuring indoors while asleep
- Vector bites occurring indoors while awake
- Vector bites occuring outdoors



□ Vector bites prevented by using an ITN during sleeping hours

- Vector bites occurring indoors while asleep
- Vector bites occurring indoors while awake
- Vector bites occuring outdoors

 \boxplus Population-wide mean personal protection provided by reported level of ITN use

- Vector bites occuring indoors while asleep
- Vector bites occurring indoors while awake
- Vector bites occuring outdoors

Suggests gap in protection around ITN access and effectiveness

- Other types of gaps in protection that may be characterized through these methods:
 - Implementation quality/access
 - Behavioral gaps in intervention use
 - Intervention effectiveness
 - Limits to protection current tools can provide

Vector-Human Data Integration

Lessons Learned, Remaining Gaps, and Limitations

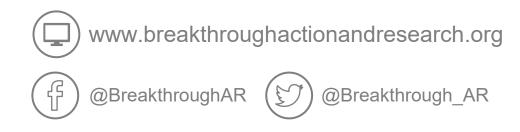
Remaining Gaps and Limitations

- Data specific to peri-domestic space and individual behaviors
- Calculations do not directly factor in IRS or community effect on malaria transmission
- Entomological data available did not calculate infection rates or associated risk of malaria transmission (may be available in other contexts)
- Averaged vector behavior across multiple sites

Lessons Learned from Leveraging Routine Data Collection

- Human behavioral data routinely captured through the MBS can be linked to entomological data to identify patterns of vector-human exposure
- Other data sources provide important context to interpret the results
 - Net durability monitoring reports
 - Other ITN use and access estimates (e.g., from MIS) and ITN use:access ratio
 - Other human behavior observations
- Timing of data collection is important, both in determining sufficient overlap in data sources as well as obtaining the most up to date data inputs
- Data collection and integration can be planned concurrently, in advance of decision-making to provide of-the-moment gap identification

Future Applications


- Apply proof-of-concept learnings and process to other countries
 - Large sample sizes from MBS allow patterns to be identified at a large scale
 - At time of planning for MBS is good time to identify where there may be overlapping entomological surveillance for timely integration
- Potential applications of results:
 - Social and behavior change activities to increase ITN use and care
 - Guidance on selection of vector control tools best suited for the context

Thank you!

For more information, please contact Kaci McCoy Program Officer kaci.mccoy@jhu.edu

