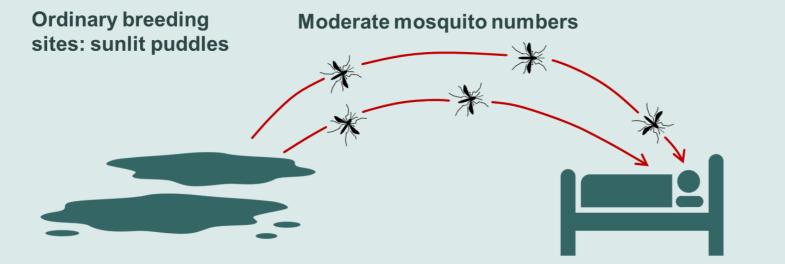
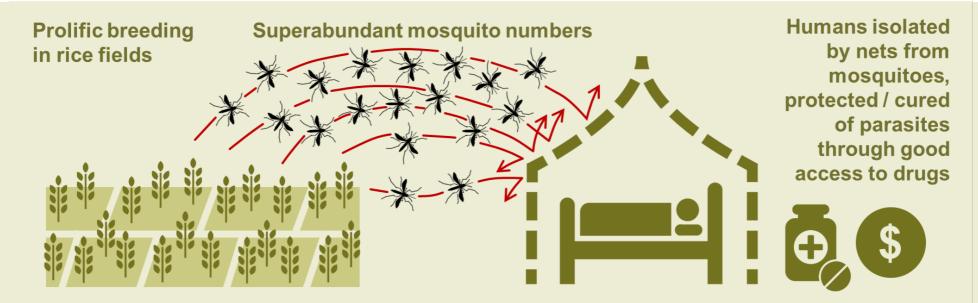
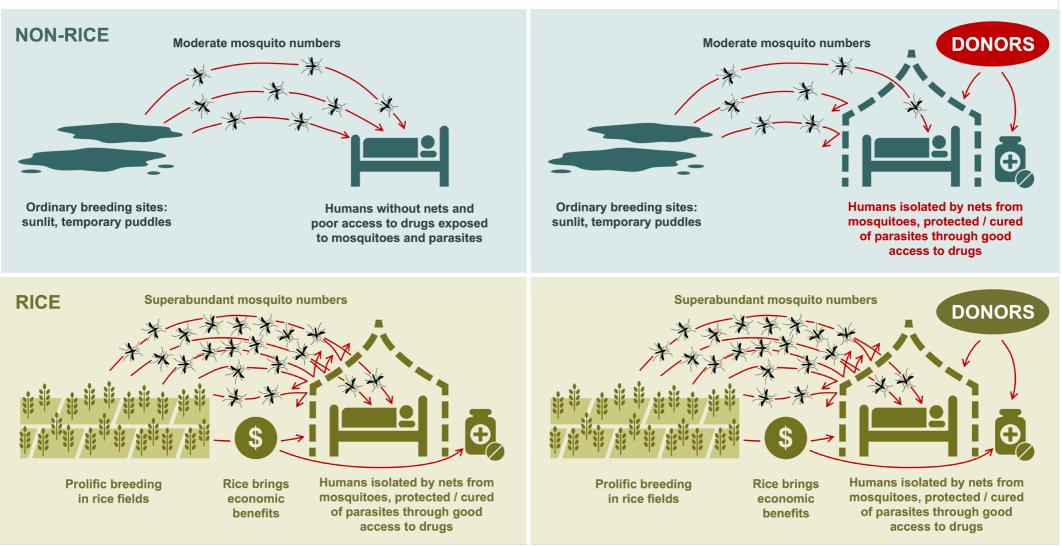

MSWG 2023

Rice & Malaria in Africa: Suppressing the breeding of malaria vectors in rice fields Our task

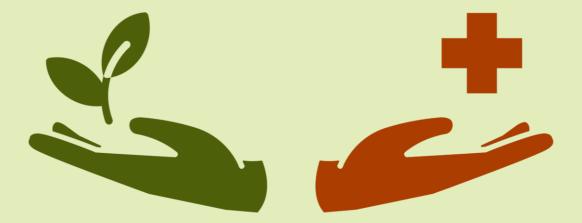

LSHTM: Kallista Chan, Lucy Tusting, Christian Bottomley, Jo Lines AfricaRice / IPR: Elliott Dossou-Yovo, Kazuki Saito, Salifou Goube-Mairoua, Raphael N'Guessan, IRRI / IHI: George Iranga, Edith Madumla, Abdelbagi Ismail, Mgeni Mohamed, Sarah Moore


1990s: A series of studies in Africa compared malaria in *rice vs. non-rice communities*

Paddies paradox: rice fields produce VERY MANY EXTRA malaria vectors but the malaria in rice villages was (at the time) similar or a bit less


Humans without nets and poor access to drugs exposed to mosquitoes and parasites

THE COUNTERFACTUALS AND INEQUITIES OCCURRING IN COMMUNITIES


PRE-2003

The relationship between rice and malaria will probably be an emerging problem for Africa

Whose problem? Agricultural sector or public health sector?

We cannot stop/delay rice intensification
Nets and drugs are only partial and temporary solutions

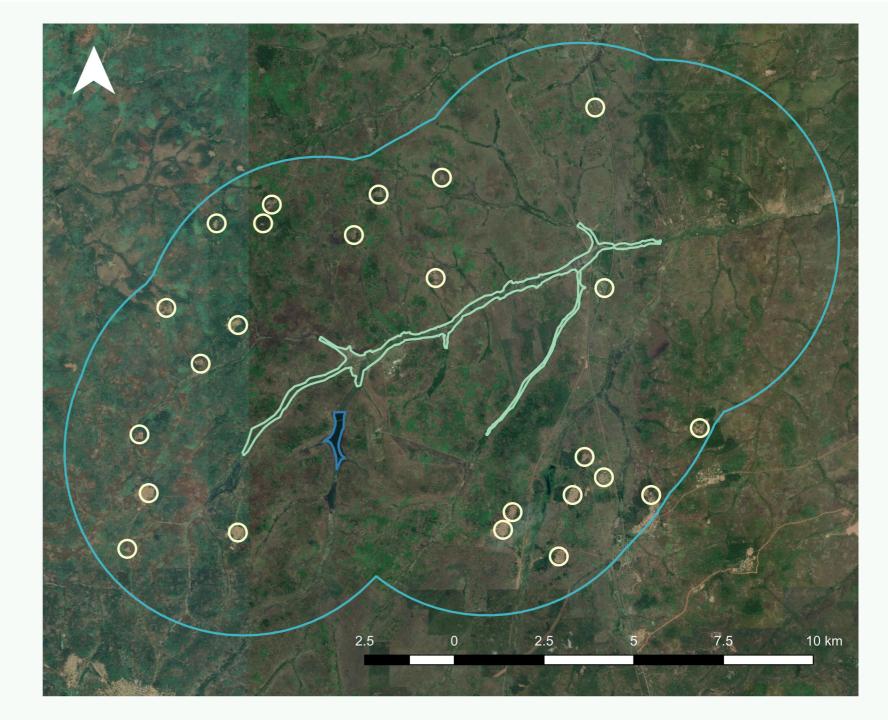
	Does it work? (% effectiveness)	No. of studies (no. in SSA)
Monomolecular surface films	-57.2 (-69.4, -40.3) / -91.6 (-99.9, +486.3)	3 (3)
Biological larvicides	-60.0 (-71.8, -43.1)	10 (2)
Synthetic organic chemicals	-73.1 (-83.8, -55.4) / -72.3 (-89.5, -26.9)	6 (2)
Fish	-81.5 (-91.4, -60.2) / -87.1 (-93.9, -72.7)	6 (1)
Copepods	-40.5 (-82.8, +105.6)	1 (0)
Azolla		1 (0)
Neem	It is a scible!	1 (0)
Intermittent irrigation	It is possible!	7 (2)
Rice variety		1 (0)
Rice variety & plant spacing	-66.3 (-90.0, +13.4)	1 (0)
Weed control (herbiciding)	+77.4 (+65.7, +89.9)	1 (0)
Agricultural insecticide	-76.4 (-88.8, -50.2)	1 (0)
Land preparation: tillage	-64.7 (-85.5, -14.1)	1 (1)
Land preparation: levelling	-12.8 (-65.2, +118.5)	1 (1)

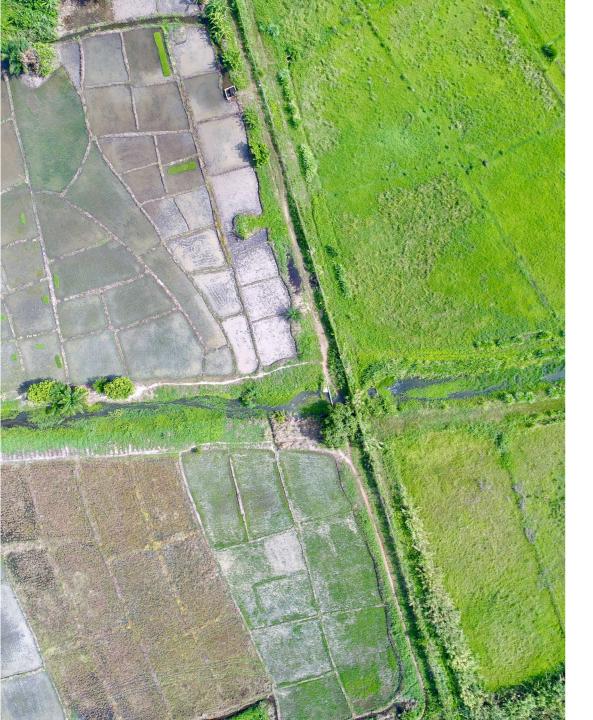
Rice experts should know – sooner and better than anyone else – what effect their recommended production methods have on mosquitoes

- Rice yield
- Water consumption
- Labour intensity
- Weed production

Our task

- 1. More (and better) evidence on the ricemalaria relationship
- 2. The rice attributable fraction of malaria
 - 3. Better riceland mosquito monitoring methods


	Country	Year	Year Control areas		Rice-growing areas			Risk ratio (95% CI)	
				Total participants	PfPR ₂₋₁₀	Total participants	PfPR ₂₋₁₀		
Pre-2003 studies									
Audibert et al (1990) ²⁶	Cameroon	1979	1470	19.4558	491	24.8473		1.28 (1.06–1.54)	
Robert et al (1987) ²⁷	Burkina Faso	1980	817	62.4235	1505	43.8538	H	0.70 (0.65–0.76)	
Couprié et al (1985) ²⁹	Cameroon	1981	554	3.2491	370	7.5676		2.33 (1.31-4.15)	
Audibert et al (1990) ²⁶	Cameroon	1981	775	12.5161	864	7.0602	+F	0.56 (0.42–0.77)	
Coosemans (1985) ²⁹	Burundi	1982	1335	17.2045	2357	54.7553		3.18 (2.81–3.60)	
losse et al (1987) ³²	Cameroon	1985	966	26.9151	1409	13.5557	+ -	0.50 (0.43-0.60)	
Boudin et al (1992) ³³	Burkina Faso	1985	1033	62.8359	1087	35.4221	H C	0.56 (0.51–0.62)	
Audibert et al (1990) ²⁶	Cameroon	1985	469	14.7122	542	11.0701		0.75 (0.54–1.04)	
Faye et al (1993) ³⁷	Senegal	1990	685	9.6825	1035	9.7871		1.01 (0.75–1.36)	
Thomson et al (1994) ³⁹	The Gambia	1991	1167	50.3844	298	35.0622	-FT	0.69 (0.59–0.82)	
Gbakima (1994) ³⁸	Sierra Leone	1991	105	68.9089	1001	49.5132		0.72 (0.63–0.83)	
Faye et al (1995) ⁴⁰	Senegal	1992	329	0.3180	656	0.1595		0.50 (0.03–7.99)	
ljumba et al (2002) ⁴³	Tanzania	1994	1483	21.4820	1468	12·2114	⊢ T	0.57 (0.48–0.67)	
Sissoko et al (2004) ⁴⁷	Mali	1995	3308	51.0108	5826	33.9839	H C	0.67 (0.63–0.70)	
Henry et al (2003) ⁴⁹	Côte d'Ivoire	1997	11951	83.2694	24266	88.0288		1.06 (1.05–1.07)	
Assi et al (2013) ⁵²	Côte d'Ivoire	1998	8189	50.7864	21141	48·5513	ſ	0.96 (0.93–0.98)	
Mutero et al (2004) ⁵⁵	Kenya	2001	116	38.9543	90	7.0057		0.17 (0.08–0.38)	
Koudou et al (2009) ⁵⁸	Côte d'Ivoire	2002	245	90.9072	171	90.1236		0.99 (0.93–1.05)	
Pooled effect estimate							⊢ ≣ •	0.82 (0.63–1.06)	
Post-2003 studies									
Rumisha et al (2019) ⁶⁴	Tanzania	2004	3283	18·7713	4605	47.8074	н Н	2.55 (2.36-2.75)	
Mboera et al (2011) ⁶⁶	Tanzania	2005	289	22.6452	289	51.8647		2.31 (1.81–2.94)	
Koudou et al (2009) ⁵⁸	Côte d'Ivoire	2005	795	63.7318	714	69.6313	7	1.09 (1.02–1.17)	
Touré et al (2016) ⁷⁰	Mali	2010	417	34.7716	728	26.5096	HE I	0.76 (0.64–0.91)	
Mboera et al (2015) ⁷³	Tanzania	2012	1016	1.9322	1022	13.6478		6.91 (4.36–10.95)	
Hien et al (2017) ⁷⁴	Burkina Faso	2014	329	55.6231	285	53·3333	<u>н</u> н	0.96 (0.83–1.11)	
Babamale et al (2020) ⁷⁵	Nigeria	2018	137	58·9749	93	95.9538		1.62 (1.40–1.87)	
Pooled effect estimate								1.73 (1.01-2.96)	


Addressing insecticide resistance and emerging mosquito-borne disease threats www.lshtm.ac.uk/raft

۸

More evidence on the rice-malaria relationship:

- Longitudinal studies (comparing malaria risk before and after rice introduction)
- Geospatial analyses of rice distribution and malaria indicators (extra consideration needed!)
- Include ento + epi (clinical) indicators
- Questions of equity

The rice-attributable fraction of malaria

- More evidence on the effect of rice cultivation on malaria risk
- Learning from climate change agronomists...

Total number of An. Number of frice gambiae s.l. produced per Number of frice Number of An. Prop. of late-stage larvae and pupae that Prop. of late-stage	Total no. of <i>An. gambiae</i> s.l. females produced per hectare of rice in a cropping season	723 thousand (95% CI 593 – 852)
$\begin{array}{c} \text{for days in a} \\ (161 \text{ days}) \end{array} = \sum_{x_t \times y_t}^{T} \times p_t^{An} \times p_{female} \times \gamma, \end{array}$	Total no. of <i>An. gambiae</i> s.l. females produced in M'bé irrigation scheme (140 ha) in a season	103 million (95% CI 84.5 – 121.4)
	Scaling factor of a standard sized plot to a hectare (which is 39.1 for a plot of 256 m ² and a hectare of 10,000 m ²) - Duration in days of growing phase s	
Reduction in the number d The total number of quadrats in a plot zero	ip-quadrat calibration factor (obtained from -intercept linear regression) corresponding he expected number of pupae in a quadrant (0.25m ²) for each pupa sampled in a dip	g to

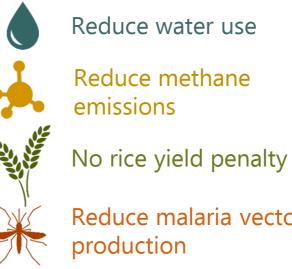
Better riceland mosquito monitoring methods

• Current methods of dipping = too laborious and subjective

Promising ideas...

- eDNA
- Image analysis

Better riceland mosquito monitoring methods


High variability in mosquito numbers within plots = lots of plot replications needed!

Better mosquito monitoring design and **techniques** are required – to be built into regular rice research

Rice-attributable burden of malaria?

Reduce malaria vector

TRANSDISCIPLINARY WIN-WIN-WIN-WIN **SOLUTION**