

Rice and malaria in Africa

Trade-off vs. co-benefits?

Jo Lines & Kallista Chan

www.lshtm.ac.uk/raft

Multi-sectoral malaria

health interventions are delivered by non-health sector businesses

Addressing man-made malaria

What is man-made

What proportion of malaria is man-made, in any given setting?

- Mainly...vector breeding in man-made landscapes
- What proportion of local vector mosquitoes are from man-made breeding sites? Consider...
 - sites created directly / indirectly by human activity
 - sites much more productive because of human activity
 - (sites inadvertently removed by human activity)

What is man-made

What proportion of malaria is man-made, in any given setting?

- Mainly...vector breeding in man-made landscapes
- What proportion of local vector mosquitoes are from man-made breeding sites? Consider...
 - sites created directly / indirectly by human activity
 - sites much more productive because of human activity
 - (sites inadvertently removed by human activity)

Man-made malaria

Is it time to revive this concept?

- Big fraction of total malaria burden especially in Africa
- Not a new idea!
- Recently less profile.... but growing importance ...
- ...as landscapes become 100% anthropogenic

Where we are

The state of the evidence

1900-2005: paddies paradox

Nowadays: rice and malaria situation has changed

But... Just 1 paper

1990s: A series of studies in Africa compared malaria in *rice vs. non-rice communities*

Paddies paradox: rice fields produce VERY MANY EXTRA

malaria vectors but the malaria in rice villages was (at the time) similar or a bit less

Superabundant mosquito numbers

Prolific breeding in rice fields Rice brings economic benefits

Humans isolated by nets from mosquitoes, protected / cured of parasites through good access to drugs

Where we are

The state of the evidence

1900-2005: paddies paradox

Nowadays: rice and malaria situation has changed

But... Just 1 paper

Intervention coverage has changed

Malaria in Africa has changed = pathway to elimination

PRE-2003 POST-2003

of parasites through good

access to drugs

benefits

DONORS

Humans isolated by nets from

mosquitoes, protected / cured

of parasites through good access to drugs

Addressing insecticide resistance and emerging mosquito-borne disease threats www.lshtm.ac.uk/raft

Where we are

The state of the evidence

1900-2005: paddies paradox

Nowadays: rice and malaria situation has changed

But... Just 1 paper

Α	Country	Year	Control areas		Rice-growing areas			Risk ratio (95% Cl
			Total participants	PfPR ₂₋₁₀	Total participants	PfPR ₂₋₁₀		
Pre-2003 studies								
Audibert et al (1990) ²⁶	Cameroon	1979	1470	19.4558	491	24.8473	≔	1.28 (1.06-1.54)
Robert et al (1987) ²⁷	Burkina Faso	1980	817	62-4235	1505	43.8538	+ □	0.70 (0.65-0.76)
Couprié et al (1985) ²⁹	Cameroon	1981	554	3.2491	370	7.5676		2.33 (1.31-4.15)
Audibert et al (1990) ²⁶	Cameroon	1981	775	12.5161	864	7.0602	H	0.56 (0.42-0.77)
Coosemans (1985) ²⁹	Burundi	1982	1335	17.2045	2357	54.7553	+	3.18 (2.81-3.60)
Josse et al (1987) ³²	Cameroon	1985	966	26.9151	1409	13.5557	H	0.50 (0.43-0.60)
Boudin et al (1992) ³³	Burkina Faso	1985	1033	62.8359	1087	35-4221		0.56 (0.51-0.62)
Audibert et al (1990) ²⁶	Cameroon	1985	469	14.7122	542	11.0701		0.75 (0.54-1.04)
Faye et al (1993) ³⁷	Senegal	1990	685	9.6825	1035	9.7871	<u></u>	1.01 (0.75-1.36)
Thomson et al (1994) ³⁹	The Gambia	1991	1167	50.3844	298	35.0622	⊢ 1	0.69 (0.59-0.82)
Gbakima (1994) ³⁸	Sierra Leone	1991	105	68.9089	1001	49.5132	₽	0.72 (0.63-0.83)
Faye et al (1995)40	Senegal	1992	329	0.3180	656	0.1595		0.50 (0.03-7.99)
ljumba et al (2002) ⁴³	Tanzania	1994	1483	21.4820	1468	12-2114	=	0.57 (0.48-0.67)
Sissoko et al (2004) ⁴⁷	Mali	1995	3308	51.0108	5826	33.9839	=	0.67 (0.63-0.70)
Henry et al (2003) ⁴⁹	Côte d'Ivoire	1997	11951	83.2694	24266	88-0288	<u> </u>	1.06 (1.05-1.07)
Assi et al (2013) ⁵²	Côte d'Ivoire	1998	8189	50.7864	21141	48.5513	(0.96 (0.93-0.98)
Mutero et al (2004)55	Kenya	2001	116	38-9543	90	7.0057		0.17 (0.08-0.38)
Koudou et al (2009)58	Côte d'Ivoire	2002	245	90-9072	171	90.1236		0.99 (0.93-1.05)
Pooled effect estimate							⊢	0.82 (0.63-1.06)
Post-2003 studies							7	()
Rumisha et al (2019) ⁶⁴	Tanzania	2004	3283	18.7713	4605	47.8074	-	2.55 (2.36-2.75)
Mboera et al (2011) ⁶⁶	Tanzania	2005	289	22.6452	289	51.8647		2.31 (1.81-2.94)
Koudou et al (2009) ⁵⁸	Côte d'Ivoire	2005	795	63.7318	714	69-6313	<u> </u>	1.09 (1.02–1.17)
Touré et al (2016) ⁷⁰	Mali	2010	417	34.7716	728	26.5096	H=i [®]	0.76 (0.64-0.91)
Mboera et al (2015) ⁷³	Tanzania	2012	1016	1.9322	1022	13.6478		6.91 (4.36–10.95)
Hien et al (2017) ⁷⁴	Burkina Faso	2014	329	55-6231	285	53.3333		0.96 (0.83-1.11)
Babamale et al (2020) ⁷⁵	Nigeria	2018	137	58.9749	93	95.9538		1.62 (1.40–1.87)
Pooled effect estimate			-3,	50 51 45	33	33 3330		1.73 (1.01-2.96)
						C	on one or or or or re re re res res	200

Growing rice w/o growing mosquitoes:

fassihility
Does it work? (% effectiveness)

	Does it work? (% effectiveness)	No. of studies (no. in SSA)
Monomolecular surface films	-57.2 (-69.4, -40.3) / -91.6 (-99.9, +486.3)	3 (3)
Biological larvicides	-60.0 (-71.8, -43.1)	10 (2)
Synthetic organic chemicals	-73.1 (-83.8, -55.4) / -72.3 (-89.5, -26.9)	6 (2)
Fish	-815 (01 4 60 2) (97 1 (02 0 72 7)	6 (1)
Copepods		1 (0)
Azolla	It is	1 (0)
Neem		1 (0)
Intermittent irrigation	possible!	7 (2)
Rice variety	+150.0 (-66.1, +1745.1)	1 (0)
Rice variety & plant spacing	-66.3 (-90.0, +13.4)	1 (0)
Weed control (herbiciding)	+77.4 (+65.7, +89.9)	1 (0)
Agricultural insecticide	-76.4 (-88.8, -50.2)	1 (0)
Land preparation: tillage	-64.7 (-85.5, -14.1)	1 (1)
Land preparation: levelling	-12.8 (-65.2, +118.5)	1 (1)

Growing rice w/o growing mosquitoes: approach

- No point in interventions being developed only by entomologists
- Entomologists have done it successfully – but no attention (except in China)
- Win-win solutions (with agriculturehealth and environmental cobenefits)

Growing rice w/o growing mosquitoes: approach

Asking rice experts to change the way rice is grown in Africa

BIG ASK!

Agenda

If the big R&D job must be led by the agricultural sector...

Q: What is there for us health people to do?

A: Convince them it is an avoidable problem:

- problem
- avoidable

Suggestions?

1. How to strengthen the epidemiological evidence that it is a problem?

1. How to strengthen the evidence that it is avoidable?

The research agenda: next steps for malaria entomologists

1. Strengthen the epidemiological evidence that rice brings malaria: HOW?

- Before-and-after studies -- routine data?
- Risk factor studies case control?
- Estimate the rice-attributable fraction? We've started...
 - what proportion of malaria burden comes from mosquitoes from rice-fields?
- Need geo-referenced prevalence without the random error of DHS/MIS

WHO?

national cross-sectoral development plans: office of the PM; AU, donors and broad development community, cross-sectoral multi-laterals ... now CIF countries?

The research agenda: next steps for malaria entomologists

2. Show that is is possible to grow rice without mosquitoes

- Lots of promising ideas begging for research

AWD & Intermittent irrigation

Levelling/tilling, direct-sowing, weeding methods, rice varieties

Fish? Even ducks?

Bti in fertilizer for initial peak of productivity