7 February 2023

Expanded Vector Control Toolbox in Humanitarian Settings

Talk 3:
Phase III study on Durable Wall Lining in Liberia

Mr Richard Allan (MENTOR Initiative)
Durable Wall Lining

Dual purpose (2 generations) designed to:

- Protect displaced communities returning to their homes, and stable communities alike
- Provide aesthetic home improvement that is desired by rural households
- Be installed onto the surface of inner walls, of rural houses
- Screen eave gaps, windows, ceilings
- Kill resting mosquitoes (mode of action = IRS)
- Significantly reduce malaria
- Provide consistent delivery and dosage of insecticide over multiple years
DL Prior Published Evidence

<table>
<thead>
<tr>
<th>Country</th>
<th>Year</th>
<th>Author</th>
<th>Journal</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Laboratory</td>
<td>2011</td>
<td>Achee NL, et al.</td>
<td>61st ASTMH meeting</td>
<td>Evaluation of ZeroVector® Durable Lining (DL) – impact on Aedes aegypti and Anopheles stephensi under varying DL coverage</td>
</tr>
<tr>
<td>2 Kenya</td>
<td>2011</td>
<td>Gimnig J</td>
<td>61st ASTMH meeting</td>
<td>Insecticide-treated wall liners reduce malaria transmission in Kenya</td>
</tr>
<tr>
<td>6 Equatorial Guinea, Ghana, Mali, South Africa, Vietnam</td>
<td>2012</td>
<td>Messenger L, et al.</td>
<td>Malaria Journal</td>
<td>Multicentre studies of insecticide-treated durable wall lining in Africa and South-East Asia: entomological efficacy and household acceptability during one year of field use</td>
</tr>
<tr>
<td>Country</td>
<td>Year</td>
<td>Author</td>
<td>Journal</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>-------------------</td>
<td>--------------------</td>
<td>---</td>
</tr>
<tr>
<td>7</td>
<td>2016</td>
<td>Mtove G, et al</td>
<td>BMC Public Health</td>
<td>The effectiveness of non-pyrethroid insecticide-treated durable wall lining to control malaria in rural Tanzania: study protocol for a two-armed cluster randomized trial</td>
</tr>
<tr>
<td>8</td>
<td>2016</td>
<td>Mondal D, et al</td>
<td>PLOS NTD</td>
<td>Efficacy, Safety and Cost of Insecticide Treated Wall Lining, Insecticide Treated Bed Nets and Indoor Wall Wash with Lime for Visceral Leishmaniasis Vector Control in the Indian Sub-continent: A Multi-country Cluster Randomized Controlled Trial</td>
</tr>
<tr>
<td>9</td>
<td>2017</td>
<td>Kweka E, et al</td>
<td>BMC Res Notes</td>
<td>Bio-efficacy of deltamethrin based durable wall lining against wild populations of Anopheles gambiae s.l. in Northern Tanzania</td>
</tr>
<tr>
<td>10</td>
<td>2017</td>
<td>Messenger L, et al</td>
<td>Malaria Journal</td>
<td>Insecticide-treated durable wall lining (ITWL): future prospects for control of malaria and other vector-borne diseases</td>
</tr>
<tr>
<td>11</td>
<td>2017</td>
<td>Emidi B, et al</td>
<td>BMC Res Notes</td>
<td>Impact of non-pyrethroid insecticide treated durable wall lining on age structure of malaria vectors in Muheza, Tanzania</td>
</tr>
</tbody>
</table>
Durable wall lining for malaria control in Liberia: results of a cluster randomized trial

Aim: To determine the malaria control efficacy of DWL.

Primary Objective: To determine if DWL has an additional protective effect in an area of pyrethroid resistance.

Secondary Objectives: To compare surface bio-availability of insecticides and entomological effectiveness over the study duration.
REDUCING DEATHS AND SUFFERING FROM TROPICAL DISEASES

Bomi County, Liberia

• Initially, 42 clusters (villages) were identified, each with > 50 children & with houses were spatially clustered.
• Participants recruited in the 42 clusters for the baseline epidemiological survey.
• Two clusters subsequently became insecure and had to be removed.
Cluster Randomized Trial Design

Participants: 2 - 59 months

Cluster villages randomly allocated to control or active arms, and paired on 4 covariates: *P. falciparum* prevalence, population size, LLIN usage & district.

Control Arm: 50 houses per 20 clusters, all of which received LLIN within the previous 12 mts.

Active Arm: 50 houses per 20 experimental clusters, all of which received LLINs with the previous 12 mts, and had internal walls and ceilings lined with DWL.

Bomi County (Upland and Coastal Divisions)
Housing Design in Trial Sites

- DWL: Vestergaard
- Non-woven polypropylene
- Fenpyroximate and abamectin
- Fenpyroximate is a NADH-coenzyme Q reductase inhibitor (IRAC 21a)
- Abamectin acts on the glutamate-gated chloride channel (IRAC 6).
- Neither used in mosquito control previously
- The non-woven material had no additional surface treatments.
Participants recruited in 42 clusters for baseline epi. survey.
Surveys conducted every 6 months, with the exception of 6 months after baseline due to Ebola virus disease restrictions.
Weekly Ebola case counts are shown as a red colour gradient.
Rainfall amounts (seasons) shown as a colour gradient in blue.
At baseline, an epidemiological survey of all children 2 months to 59 months of age was conducted in 40 clusters.

Age, sex, tympanic temperature were recorded and children were tested for P. falciparum infection with SD Bioline Pf RDT.

All RDT positive cases were treated with artesunate amodiaquine.

The epidemiological survey was repeated after DWL installation at 12, 18 and 24 months.

All children were recruited regardless of whether they participated in earlier surveys.

Surveys at 12, 18 and 24 months following baseline were conducted during Ebola virus transmission and were subject to increased infection control protocols. This meant that febrile (by infrared thermometer) or other symptomatic children were excluded from the study. Between monitoring periods the NGO continued to support healthcare throughout the region.
Entomological Effectiveness Outcome

- Baseline resistance profile in wild-caught mosquitoes conducted (WHO guidelines).
- Bioefficacy (12 & 24 months) against An. gambiae s.l. mosquitoes was determined by collecting larvae from three sites in Bomi County.
- Larvae were reared to adults and females were tested in WHO cone bioassays modified from WHOPES LLIN guidelines.
- DWL samples (30 × 30 cm) from consenting households were taken at 2 m above the floor and the resulting holes were patched.
- Female mosquitoes aged 2–5 days post eclosion were exposed at a 45° angle for 30 min with 10 mosquitoes per cone and placed in holding cups for 72 h.

Due to the variability in assay conditions and wild-caught mosquitoes, the allowable control mortality at 72 h was extended to 20%. Mean mortality was calculated for 12 samples collected at time of installation and 129 samples collected 12 months post installation.
Baseline balance in Pf prevalence between study arms.

Change in proportion of Pf prevalence from
• Baseline to 12 months &
• From baseline to 24 months

Boxplot represents mean, interquartile range, whiskers represent range, notch represents 95% confidence interval.
Mortality of An. gambiae s.l. following exposure to fenpyroximate abamectin treated DWL, observed at 24 and 72 h post exposure in WHO cone bioassays.

Bars = mean of replicates, dots = individual bioassays, error bars = standard deviation.
Epidemiological effect of DWL in 20 paired clusters Bomi County, Liberia.

Paired clusters with their corresponding village names and cluster numbers are shown along with whether they were randomized to receive DWL or not.
Results

- Installation of DWL resulted in a significant reduction of P. falciparum malaria prevalence 12 months later in the 28 Upland clusters of the study (RR = 1.3, p=0.022).
- This effect was not seen in the 12 Coastal clusters at 12 months (RR = 1.3, p=0.344).
- A difference between study arms was not observed at 18 or 24 months following the baseline survey.
- This reduction in control effect coincided with a significant reduction in bioavailability of insecticides on the DWL after 12 months.
Conclusions

DWL is feasible to install and easy maintain with high levels of acceptance, even in an Ebola epidemic.

A highly adaptable tool that can be installed into a wide range of structures.

Designed for returnees, but applicable for most communities / structures in stable settings.

It significantly helps to prevent malaria infections in inland high transmission settings (uplands).

It may provide multi-year protection with further chemical/materials development.
Acknowledgements & Further Reading

Colleagues in PMI who contributed to the trial protocol design.

Colleagues who worked with me to help deliver this study:
David Giesbrecht, Tuwuyor G. Belleh, Julie Pontarollo, Victor S. Hinneh, Oliver Pratt, Sajid Kamal, Richard Allan*

*Corresponding author - Email: Richard.allan@mentor-initiative.net