STAYING AHEAD OF RESISTANCE & BUILDING TRANSFORMATIVE TOOLS A quick look at the BMGF malaria vector control portfolio Dr. Helen Jamet, Deputy Director, Vector Control, Malaria Program Strategy Team March 2022 ## CHARTING AN ERADICATION PATHWAY THAT MINIMIZES DEATHS ## Three strategic goals define Pathway to Eradication #### 1) Drive down burden In the short- and medium- term, scale surveillance + data-driven sub-national optimization, chemoprevention & case management in high burden settings to reduce deaths and cases #### 2 Shorten the endgame Create enabling environment for winning endgame in high endemic SSA by investing in next-gen surveillance systems, MDR Pf elimination, and accelerating endgame R&D today #### (3) Get ahead of resistance Mitigate emergence of drug & insecticide resistance by eliminating Pf in the GMS, developing a robust pipeline of Als and analyzing entomological and genetic epi data to quickly respond to threats # VECTOR CONTROL PORTFOLIO INVESTMENT AREAS #### Insecticidal interventions - Discover, optimize, and translate new insecticide active ingredients (Als) to fight resistance - Develop new AI combinations into LLINs and IRS to fight insecticide resistance - Develop novel insecticide delivery systems for community transmission prevention - Tools for improved surveillance - Vector control product launch & life cycle management - Develop long lasting endectocides #### **Genetically Based Vector Control** - Create & test platforms to test GM mosquitoes - Develop self-limiting mosquito constructs - Develop self-sustaining GM mosquito constructs with gene drive - Develop endosymbiont-based interventions #### Vector surveillance - Tools for improved vector surveillance - Improve entomological surveillance & data use # **INSECTICIDAL INTERVENTIONS** | Pre-development | Development | Field Trials | Implementation | | | |---|--|---|-----------------------|--|--| | Active Ingredient insecticide discovery 3 novel Als (IVCC) Exploration of traditional Chinese medicine library | LLINs 2 x novel Als with pyrethroids (IVCC) 1 x PBO LLIN | IRS 2 x new molecules
(submitted to PQ) PBO net field stability | Next generation LLINs | | | | ATSB Identifying long range attractants Investigating alternative Als Active ingredient discovery (volatiles/repellents) | ATSB Product development Product optimization Manufacturing scale-up) | Eave Tubes & window screening*Spatial repellents**ATSB | | | | ^{*} RCT complete; proof of concept of insecticidal window screens continuing # **INSECTICIDAL INTERVENTIONS** | Pre-development | Development | Field Trials | Implementation | |---|--|---|-----------------------| | Active Ingredient insecticide discovery 3 novel Als (IVCC) Exploration of traditional Chinese medicine library | LLINs 2 x novel Als with pyrethroids (IVCC) 1 x PBO LLIN | IRS 2 x new molecules
(submitted to PQ) PBO net field stability | Next generation LLINs | | ATSB Identifying long range attractants Investigating alternative Als Active ingredient discovery (volatiles/repellents) | ATSB Product development Product optimization Manufacturing scale-up) | Eave Tubes & window screening*Spatial repellents**ATSB | | ^{*} RCT complete; proof of concept of insecticidal window screens continuing # HOW DO WE REPLACE PYRETHROIDS? | | Strengths | Weaknesses | |-------------|--|--| | New AI | Delivers new insecticide that fits TPP for intended use Offers novel target site mode of action No pre-existing background resistance | Very few companies capable of new Al development High cost Long time to market High failure rate even at late stages Relatively high CoGs for new Al | | Repurposing | Eliminates highly risky development process Relatively short time to market Relatively low cost for of development Potential: Many companies do not screen for activity vs. resistant mosquitoes. | For LLIN especially – few insecticides meet the TPP requirements Very few compounds that provide BFI/Personal Protection hence combining with Pyrethroids Not always possible to access chemistry and regulatory package. | # **INSECTICIDAL INTERVENTIONS** | Pre-development Development | | Field Trials Implementation | | | | |---|--|--|-----------------------|--|--| | Active Ingredient insecticide discovery 3 novel Als (IVCC) Exploration of traditional Chinese medicine library | 2 x novel Als with pyrethroids (IVCC) Exploration of traditional 2 x novel Als with pyrethroids (IVCC) 1 x PBO LLIN | | Next generation LLINs | | | | ATSB Identifying long range attractants Investigating alternative Als Active ingredient discovery (volatiles/repellents) | ATSB Product development Product optimization Manufacturing scale-up) | Eave Tubes & window screening*Spatial repellents**ATSB | | | | ^{*} RCT complete; proof of concept of insecticidal window screens continuing # ATTRACTIVE TARGETED SUGAR BAIT CONCEPT → A device that presents an attractive sugar-meal laced with a lethal toxicant to mosquitoes and other flying, biting insects ### Use case - Outdoor application - Offers insecticide to mosquito through mechanism other than contact, opening up wider choice of insecticides and potential for resistance management - Targets both male and female mosquito populations - Reduces transmission by impacting adult mosquito survival, shifting towards greater proportion of younger uninfected females # GENETIC BASED VECTOR CONTROL | Pre-development | Development | Field Trials | Implementation | | | |--|--|---|---|--|--| | Lab development | Regulatory approvals for field testing | Field Trials | Implementation | | | | Self limited An. albimanus & | Self-limited An. gambiae (Target Malaria) | No products for
malaria control have
made it to field trials
yet | Self-limited Aedes aegypti (DENV, ZIKV) (Oxitec)** | | | ^{*} Prior investment by BMGF, deprioritized in 2019 ^{**} Not funded by BMGF # DEFINITION OF PARADIGM/ PRODUCT CLASS | | Self-limited | Gene drive | |---------------------|---|---| | Product description | A mosquito strain that is modified so that only male offspring are produced | A mosquito strain that is modified with a construct that copies itself. The construct can either decrease mosquito populations (suppression) or make them unable to transmit malaria (replacement). | | Potential impact | Localized | Widespread | | Timespan | Transgenic mosquitoes die off after releases halt | Transgenic mosquitoes continue to increase and spread after releases halt | | Intended use | a) Malaria elimination in small foci b) Controlling urban malaria outbreaks c) Data from GM self-limited releases can contribute to decision-making on gene drive | To drive down malaria transmission across widespread, rural, high-burden areas where current tools are insufficient to get to elimination | | Timeline | More likely to be available in the next 5 years | 10+ years | # **ENDECTOCIDES** | Discovery Early / Preclinical | Mid / Proof of concept | Late Dev/ Launch | | | |---|------------------------|--|--|--| | Novel isoxazoline Long acting oral ivermectin formulation Long acting injectab ivermectin | | Multiple trials of 1-3d
standard ivermectin with
and without DHA/PQP
MDA (modelling suggest
low impact)* | | | # LONG-ACTING ENDECTOCIDES IN COMBINATION WITH OTHER INTERVENTIONS TO REDUCE COVERAGE NEEDS Endectocide MDA alone is effective when the duration is \geq 60 days; however MDA combining an ACT with an endectocide of >14 days increase the impact above either alone (right). Endectocides have less impact in villages with effective household vector control; adding endectocide MDA can achieve elimination in functional coverage (above). # **VECTOR SURVEILLANCE** Source: Russell et al. Malar J (2020) 19:422 Table 7 Summary assessment of laboratory analytical techniques for malaria vectors by expert informants | | Mosquito identification | | Insecticide Spore | | | Age grading | | | | |---------------------------------------|-------------------------|------------------|-------------------|---------------|--------------|-------------|------------------------|-------------------|-----| | Analysis | Morphology ¹ | PCR ² | WHO | CDC
bottle | CS-
ELISA | PCR | Ovarian
dilatations | Parity dissection | NIR | | Training requirement | • | • | • | • | • | • | • | • | • | | Human Resource Needs | • | -5 | • | • | • | • | • | • | • | | Complexity of Method | • | • | • | • | - | • | - | • | - | | Costs/Logistics/Supplies ³ | • | • | • | • | • | • | • | • | • | | Specimen quality | • | • | • | • | - | • | - | • | | | In-country capability | • | • | • | • | • | • | • | • | - | | Interpretation of result ⁴ | - | - | • | • | - | | • | | • | | Technical consistency | • | - | - | - | - | • | • | | | ^a Yellow indicates a moderate level of training required Source: Farlow et al. Malar J (2020) 19:432 ^b Red indicates significant requirements for use including high level of training, human resources, complex methodology, costs, need for quality specimens, which impacts technique uptake and use ^c Green indicates few impediments (few logistics concerns, low costs or in country capability present) for use ^d Yellow indicates variability in interpretation of results and technical consistency e "-", not expressly addressed by informants # PRIORITIES FOR NEW TECHNIQUES - Human Landing Catch replacement to determine biting rates - Age grading of mosquitoes to determine age structure of mosquito populations, with new techniques - Surface active ingredient detection using a quantitative, non bioassay method - **Field applicable rapid assays** for species identification, insecticide resistance frequency and mechanisms, sporozoite rates - Automated multiple parameter analyses for: - adult density, species ID, insecticide resistance status and sporozoite infection - Characterization of larval habitats (remote sensing with drones, satellite imagery, other)