

STAYING AHEAD OF RESISTANCE & BUILDING TRANSFORMATIVE TOOLS

A quick look at the BMGF malaria vector control portfolio

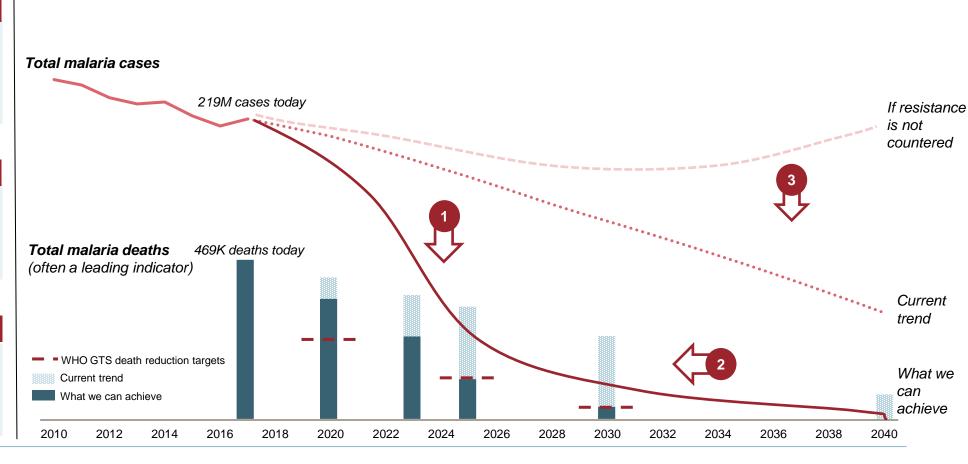
Dr. Helen Jamet, Deputy Director, Vector Control, Malaria Program Strategy Team

March 2022

CHARTING AN ERADICATION PATHWAY THAT MINIMIZES DEATHS

Three strategic goals define Pathway to Eradication

1) Drive down burden


In the short- and medium- term, scale surveillance + data-driven sub-national optimization, chemoprevention & case management in high burden settings to reduce deaths and cases

2 Shorten the endgame

Create enabling environment for winning endgame in high endemic SSA by investing in next-gen surveillance systems, MDR Pf elimination, and accelerating endgame R&D today

(3) Get ahead of resistance

Mitigate emergence of drug & insecticide resistance by eliminating Pf in the GMS, developing a robust pipeline of Als and analyzing entomological and genetic epi data to quickly respond to threats

VECTOR CONTROL PORTFOLIO INVESTMENT AREAS

Insecticidal interventions

- Discover, optimize, and translate new insecticide active ingredients (Als) to fight resistance
- Develop new AI combinations into LLINs and IRS to fight insecticide resistance
- Develop novel insecticide delivery systems for community transmission prevention
- Tools for improved surveillance
- Vector control product launch & life cycle management
- Develop long lasting endectocides

Genetically Based Vector Control

- Create & test platforms to test GM mosquitoes
- Develop self-limiting mosquito constructs
- Develop self-sustaining GM mosquito constructs with gene drive
- Develop endosymbiont-based interventions

Vector surveillance

- Tools for improved vector surveillance
- Improve entomological surveillance & data use

INSECTICIDAL INTERVENTIONS

Pre-development	Development	Field Trials	Implementation		
 Active Ingredient insecticide discovery 3 novel Als (IVCC) Exploration of traditional Chinese medicine library 	 LLINs 2 x novel Als with pyrethroids (IVCC) 1 x PBO LLIN 	 IRS 2 x new molecules (submitted to PQ) PBO net field stability 	Next generation LLINs		
 ATSB Identifying long range attractants Investigating alternative Als Active ingredient discovery (volatiles/repellents) 	 ATSB Product development Product optimization Manufacturing scale-up) 	Eave Tubes & window screening*Spatial repellents**ATSB			

^{*} RCT complete; proof of concept of insecticidal window screens continuing

INSECTICIDAL INTERVENTIONS

Pre-development	Development	Field Trials	Implementation
 Active Ingredient insecticide discovery 3 novel Als (IVCC) Exploration of traditional Chinese medicine library 	 LLINs 2 x novel Als with pyrethroids (IVCC) 1 x PBO LLIN 	 IRS 2 x new molecules (submitted to PQ) PBO net field stability 	Next generation LLINs
 ATSB Identifying long range attractants Investigating alternative Als Active ingredient discovery (volatiles/repellents) 	 ATSB Product development Product optimization Manufacturing scale-up) 	Eave Tubes & window screening*Spatial repellents**ATSB	

^{*} RCT complete; proof of concept of insecticidal window screens continuing

HOW DO WE REPLACE PYRETHROIDS?

	Strengths	Weaknesses
New AI	Delivers new insecticide that fits TPP for intended use Offers novel target site mode of action No pre-existing background resistance	Very few companies capable of new Al development High cost Long time to market High failure rate even at late stages Relatively high CoGs for new Al
Repurposing	Eliminates highly risky development process Relatively short time to market Relatively low cost for of development Potential: Many companies do not screen for activity vs. resistant mosquitoes.	For LLIN especially – few insecticides meet the TPP requirements Very few compounds that provide BFI/Personal Protection hence combining with Pyrethroids Not always possible to access chemistry and regulatory package.

INSECTICIDAL INTERVENTIONS

Pre-development Development		Field Trials Implementation			
 Active Ingredient insecticide discovery 3 novel Als (IVCC) Exploration of traditional Chinese medicine library 	 2 x novel Als with pyrethroids (IVCC) Exploration of traditional 2 x novel Als with pyrethroids (IVCC) 1 x PBO LLIN 		Next generation LLINs		
 ATSB Identifying long range attractants Investigating alternative Als Active ingredient discovery (volatiles/repellents) 	 ATSB Product development Product optimization Manufacturing scale-up) 	Eave Tubes & window screening*Spatial repellents**ATSB			

^{*} RCT complete; proof of concept of insecticidal window screens continuing

ATTRACTIVE TARGETED SUGAR BAIT CONCEPT

→ A device that presents an attractive sugar-meal laced with a lethal toxicant to mosquitoes and other flying, biting insects

Use case

- Outdoor application
- Offers insecticide to mosquito through mechanism other than contact, opening up wider choice of insecticides and potential for resistance management
- Targets both male and female mosquito populations
- Reduces transmission by impacting adult mosquito survival, shifting towards greater proportion of younger uninfected females

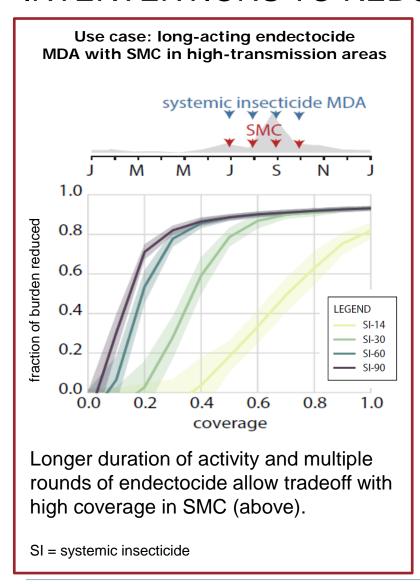
GENETIC BASED VECTOR CONTROL

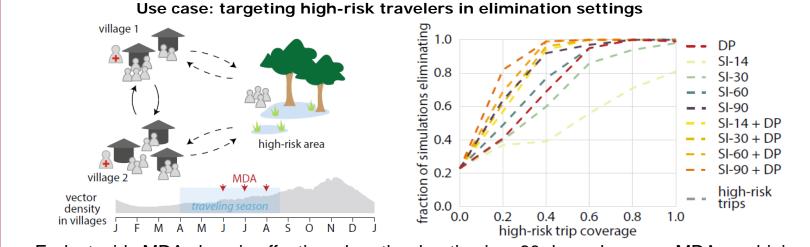
Pre-development	Development	Field Trials	Implementation		
Lab development	Regulatory approvals for field testing	Field Trials	Implementation		
 Self limited An. albimanus &	 Self-limited An. gambiae (Target Malaria) 	No products for malaria control have made it to field trials yet	 Self-limited Aedes aegypti (DENV, ZIKV) (Oxitec)** 		

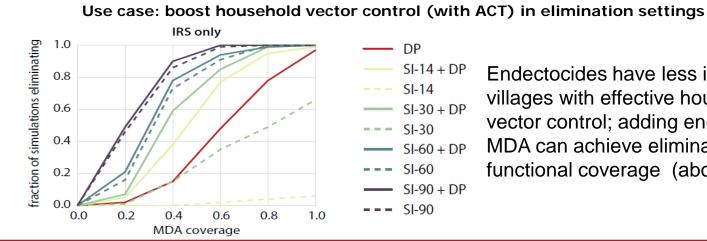
^{*} Prior investment by BMGF, deprioritized in 2019

^{**} Not funded by BMGF

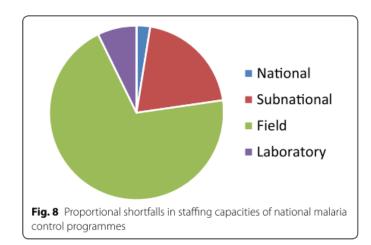
DEFINITION OF PARADIGM/ PRODUCT CLASS


	Self-limited	Gene drive
Product description	A mosquito strain that is modified so that only male offspring are produced	A mosquito strain that is modified with a construct that copies itself. The construct can either decrease mosquito populations (suppression) or make them unable to transmit malaria (replacement).
Potential impact	Localized	Widespread
Timespan	Transgenic mosquitoes die off after releases halt	Transgenic mosquitoes continue to increase and spread after releases halt
Intended use	 a) Malaria elimination in small foci b) Controlling urban malaria outbreaks c) Data from GM self-limited releases can contribute to decision-making on gene drive 	To drive down malaria transmission across widespread, rural, high-burden areas where current tools are insufficient to get to elimination
Timeline	More likely to be available in the next 5 years	10+ years


ENDECTOCIDES


Discovery Early / Preclinical	Mid / Proof of concept	Late Dev/ Launch		
 Novel isoxazoline Long acting oral ivermectin formulation Long acting injectab ivermectin 		 Multiple trials of 1-3d standard ivermectin with and without DHA/PQP MDA (modelling suggest low impact)* 		

LONG-ACTING ENDECTOCIDES IN COMBINATION WITH OTHER INTERVENTIONS TO REDUCE COVERAGE NEEDS



Endectocide MDA alone is effective when the duration is \geq 60 days; however MDA combining an ACT with an endectocide of >14 days increase the impact above either alone (right).

Endectocides have less impact in villages with effective household vector control; adding endectocide MDA can achieve elimination in functional coverage (above).

VECTOR SURVEILLANCE

Source: Russell et al. Malar J (2020) 19:422

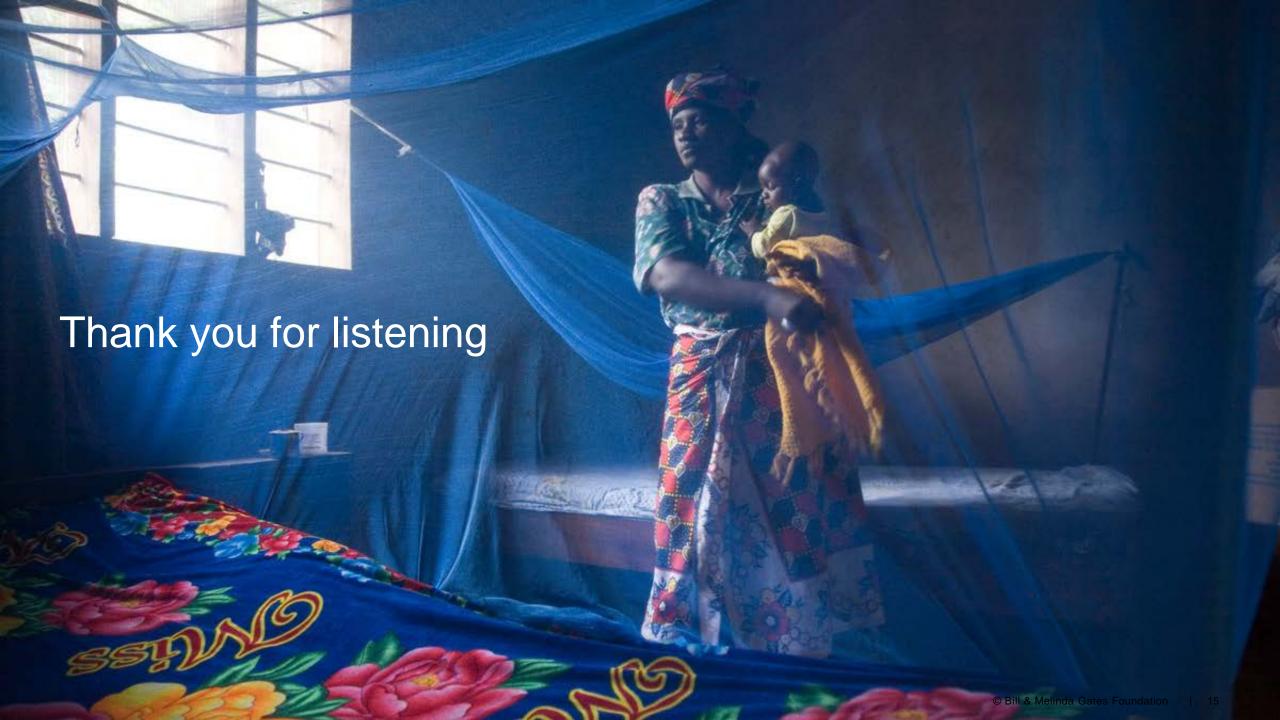
Table 7 Summary assessment of laboratory analytical techniques for malaria vectors by expert informants

	Mosquito identification		Insecticide Spore			Age grading			
Analysis	Morphology ¹	PCR ²	WHO	CDC bottle	CS- ELISA	PCR	Ovarian dilatations	Parity dissection	NIR
Training requirement	•	•	•	•	•	•	•	•	•
Human Resource Needs	•	-5	•	•	•	•	•	•	•
Complexity of Method	•	•	•	•	-	•	-	•	-
Costs/Logistics/Supplies ³	•	•	•	•	•	•	•	•	•
Specimen quality	•	•	•	•	-	•	-	•	
In-country capability	•	•	•	•	•	•	•	•	-
Interpretation of result ⁴	-	-	•	•	-		•		•
Technical consistency	•	-	-	-	-	•	•		

^a Yellow indicates a moderate level of training required

Source: Farlow et al. Malar J (2020) 19:432

^b Red indicates significant requirements for use including high level of training, human resources, complex methodology, costs, need for quality specimens, which impacts technique uptake and use


^c Green indicates few impediments (few logistics concerns, low costs or in country capability present) for use

^d Yellow indicates variability in interpretation of results and technical consistency

e "-", not expressly addressed by informants

PRIORITIES FOR NEW TECHNIQUES

- Human Landing Catch replacement to determine biting rates
 - Age grading of mosquitoes to determine age structure of mosquito populations, with new techniques
 - Surface active ingredient detection using a quantitative, non bioassay method
 - **Field applicable rapid assays** for species identification, insecticide resistance frequency and mechanisms, sporozoite rates
 - Automated multiple parameter analyses for:
 - adult density, species ID, insecticide resistance status and sporozoite infection
 - Characterization of larval habitats (remote sensing with drones, satellite imagery, other)

